login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124151
Smallest k such that 1 + Sum{j=1..n} k^(2*j-1) is prime.
3
1, 1, 2, 1, 2, 1, 10, 2, 2, 1, 2, 1, 48, 182, 2, 1, 60, 1, 10, 42, 2, 1, 102, 12, 4, 12, 110, 1, 12, 1, 100, 5, 28, 18, 144, 1, 102, 9, 2, 1, 30, 1, 186, 110, 130, 1, 566, 23, 1234, 2, 12, 1, 336, 103, 142, 341, 1104, 1, 444, 1, 22, 119, 2, 45, 14, 1, 84, 23, 238, 1, 936, 1, 78, 12
OFFSET
1,3
COMMENTS
a(n) = 1 if and only if n is in A006093 (primes minus 1), so 1 occurs infinitely often.
EXAMPLE
Consider n = 7. 1 + Sum{j=1...7} k^(2*j-1) evaluates to 8, 10923, 1793614, 71582789, 1271565756, 13433856703, 98907531458, 558482096649, 2573639151184, 10101010101011 for k = 1, ..., 10. Only the last of these numbers, 1+10+10^3+10^5+10^7+10^9+10^11+10^13 = 10101010101011, is prime, hence a(7) = 10.
MATHEMATICA
f[n_] := Block[{k = 1}, While[ !PrimeQ[Sum[k^(2j - 1), {j, n}] + 1], k++ ]; k]; Array[f, 74] (* Robert G. Wilson v, Dec 17 2006 *)
PROG
(PARI) a(n)={my(k=1); while(!isprime(1+sum(j=1, n, k^(2*j-1))), k++); k} \\ Klaus Brockhaus, Dec 16 2006
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 13 2006, Dec 14 2006
EXTENSIONS
Edited and extended by Klaus Brockhaus, Dec 16 2006
STATUS
approved