login
A124781
a(n) = gcd(A093101(n), A093101(n+2)) where A093101(n) = gcd(n!, A(n)) and A(n) = A000522(n) = Sum_{k=0..n} n!/k!.
5
1, 1, 1, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 26, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 13, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 26, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 65, 2, 1, 2, 1, 10, 1, 2, 1, 74, 5, 2, 1, 26, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 13, 2, 1, 2, 5, 2, 1, 2, 1
OFFSET
0,4
COMMENTS
a(n) divides n+3 because A(n+2) = (n+2)(n+1)*A(n) + n+3.
LINKS
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
FORMULA
a(n) = gcd(A093101(n), A093101(n+2)) = (n+3)/A123901(n).
a(n) = gcd(A(n), A(n+2), n!) where A(n)=1+n+n(n-1)+...+n!. - Jonathan Sondow, Nov 13 2006
EXAMPLE
a(3) = gcd(d(3),d(5)) = gcd(gcd(3!,16), gcd(5!,326)) = gcd(2,2) = 2.
MATHEMATICA
(A[n_] := Sum[n!/k!, {k, 0, n}]; d[n_] := GCD[n!, A[n]]; Table[GCD[d[n], d[n+2]], {n, 0, 100}])
(* Second program, faster: *)
Table[GCD @@ Map[GCD[#!, Floor[E*#!] - Boole[# == 0]] &, n + {0, 2}], {n, 0, 96}] (* Michael De Vlieger, Jul 12 2017 *)
PROG
(PARI)
A000522(n) = sum(k=0, n, binomial(n, k)*k!); \\ This function from Joerg Arndt, Dec 14 2014
A093101(n) = gcd(n!, A000522(n));
m1=m2=1; for(n=0, 4096, m=m1; m1=m2; m2 = A093101(n+2); m124781 = gcd(m, m2); write("b093101.txt", n, " ", m); write("b124781.txt", n, " ", m124781); write("b123901.txt", n, " ", (n+3)/m124781)); \\ Antti Karttunen, Jul 12 2017
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Nov 07 2006
EXTENSIONS
Replaced d(n) in the name with A093101(n). - Antti Karttunen, Jul 12 2017
STATUS
approved