This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123680 a(n) = Sum_{k=0..n} C(n+k-1,k)*k!. 3
 1, 2, 9, 76, 985, 17046, 366289, 9374968, 278095761, 9375293170, 353906211241, 14785127222724, 677150215857193, 33734100501544366, 1816008001717251105, 105048613959883117936, 6497985798745934394529, 427999600108502895779658 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is divisible by (n+1) : a(n)/(n+1) = A123681(n). LINKS G. C. Greubel, Table of n, a(n) for n = 0..365 FORMULA a(n) = pochhammer(n, n + 1)*subfactorial(-2*n - 1) + (-1)^n*subfactorial(-n) where subfactorial(n) = exp(-1)*Gamma(n + 1, -1). - Peter Luschny, Oct 18 2017 a(n) ~ 2^(2*n - 1/2) * n^n / exp(n). - Vaclav Kotesovec, Nov 27 2017 EXAMPLE Since a(n) = Sum_{k=0..n} k! * [x^k] 1/(1-x)^n, to get a(4), list coefficients of x^0 through x^4 in 1/(1-x)^4, [1,4,10,20,35], then dot product with factorials 0! through 4!, [0!,1!,2!,3!,4! ], so that a(4) = 1*0! + 4*1! + 10*2! + 20*3! + 35*4! = 985. MAPLE subfactorial := n -> simplify(exp(-1)*GAMMA(n+1, -1)): a := n -> pochhammer(n, n+1)*subfactorial(-2*n-1)+(-1)^n*subfactorial(-n): seq(simplify(evalc(a(n))), n=0..18); # Peter Luschny, Oct 18 2017 MATHEMATICA Table[Sum[Binomial[n + k - 1, k]*k!, {k, 0, n}], {n, 1, 50}] (* G. C. Greubel, Oct 18 2017 *) PROG (PARI) a(n)=sum(k=0, n, binomial(n+k-1, k)*k!) CROSSREFS Cf. A123681. Sequence in context: A105785 A245406 A276742 * A132621 A108992 A058164 Adjacent sequences:  A123677 A123678 A123679 * A123681 A123682 A123683 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 05 2006 EXTENSIONS Definition corrected Oct 27 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 20:24 EDT 2019. Contains 328273 sequences. (Running on oeis4.)