login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276742 E.g.f. A(x) satisfies: A( 1/A(x) * Integral A(x) dx ) = 1 + x. 0
1, 1, 1, 2, 9, 76, 980, 17304, 393463, 11072376, 375015501, 14973327740, 693507063942, 36782159095080, 2210369895001450, 149163550608705780, 11218246110724502325, 934089674706365890832, 85613718583699681233208, 8593417105404547807210554, 940306481313403267058365853, 111703159299047925885976523740, 14352698749278209896668891217608, 1987913848425789150258188910598408, 295873533681557805541331625248339120 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..24.

FORMULA

E.g.f. A(x) satisfies:

(1) A(x) = 1 + Series_Reversion( 1/A(x) * Integral A(x) dx ).

(2) Integral A(x) dx = A(x) * Series_Reversion( A(x) - 1 ).

(3) A(x) = exp( Integral (1 - B'(x))/B(x) dx ), where B(A(x) - 1) = x.

EXAMPLE

E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 9*x^4/4! + 76*x^5/5! + 980*x^6/6! + 17304*x^7/7! + 393463*x^8/8! + 11072376*x^9/9! + 375015501*x^10/10! + 14973327740*x^11/11! + 693507063942*x^12/12! +...

such that A( [Integral A(x) dx] / A(x) ) = 1 + x.

RELATED SERIES.

[Integral A(x) dx] / A(x) = x - x^2/2! + x^3/3! - 4*x^4/4! - 6*x^5/5! - 189*x^6/6! - 2870*x^7/7! - 66500*x^8/8! - 1828400*x^9/9! - 60761407*x^10/10! - 2374495340*x^11/11! - 107581374684*x^12/12! +...

which equals Series_Reversion( A(x) - 1 ).

PROG

(PARI) {a(n) = my(A=[1, 1], F); for(i=1, n+1, A = concat(A, 0); F=sum(m=1, #A, A[m]*x^(m-1)/(m-1)!) +x*O(x^#A); A[#A] = -(#A-1)!*polcoeff( subst(F, x, intformal(F)/F ), #A-1) ); A[n+1]}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Sequence in context: A277181 A105785 A245406 * A123680 A132621 A108992

Adjacent sequences:  A276739 A276740 A276741 * A276743 A276744 A276745

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 24 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 20:46 EDT 2019. Contains 326207 sequences. (Running on oeis4.)