login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123400
Infinite string related to Ehrlich's swap method for generating permutations.
3
1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 2, 4, 3, 1, 3, 1, 3, 2, 1, 3, 1, 3, 1, 2, 3, 1, 3, 1, 3, 2, 1, 3, 1, 3, 1, 4, 2, 3, 2, 3, 2, 1, 3, 2, 3, 2, 3, 1, 2, 3, 2, 3, 2, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 2, 4, 3, 1, 3, 1, 3, 2, 1, 3, 1
OFFSET
1,2
COMMENTS
In the successive permutations in star-transposition order a(n) is the position of the element swapped with the first element at step n; equivalently, the value swapped with 0 in the inverse permutation. - Joerg Arndt, Dec 25 2023
The first 24 values (plus 1, as [2, 3, 2, 3, 2, 4, 3, 2, 3, 2, 3, 4, 2, 3, 2, 3, 2, 4, 3, 2, 3, 2, 3, 5]) are given on the last page of the Kompel'makher/Liskovets reference. - Joerg Arndt, Jan 17 2024
REFERENCES
D. E. Knuth, TAOCP, Section 7.2.1.2.
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), section 10.8 "Star-transposition order", pp.257-258.
V. L. Kompel'makher, V. A. Liskovets, Sequential generation of arrangements by a basis of transpositions, Cybernetics and Systems Analysis, vol. 11, no. 3, pp. 362-366, (1975).
EXAMPLE
permutation swap inverse permutation
0: [ 0 1 2 3 ] [ 0 1 2 3 ]
1: [ 1 0 2 3 ] (0, 1) [ 1 0 2 3 ]
2: [ 2 0 1 3 ] (0, 2) [ 1 2 0 3 ]
3: [ 0 2 1 3 ] (0, 1) [ 0 2 1 3 ]
4: [ 1 2 0 3 ] (0, 2) [ 2 0 1 3 ]
5: [ 2 1 0 3 ] (0, 1) [ 2 1 0 3 ]
6: [ 3 1 0 2 ] (0, 3) [ 2 1 3 0 ]
7: [ 0 1 3 2 ] (0, 2) [ 0 1 3 2 ]
8: [ 1 0 3 2 ] (0, 1) [ 1 0 3 2 ]
9: [ 3 0 1 2 ] (0, 2) [ 1 2 3 0 ]
10: [ 0 3 1 2 ] (0, 1) [ 0 2 3 1 ]
11: [ 1 3 0 2 ] (0, 2) [ 2 0 3 1 ]
12: [ 2 3 0 1 ] (0, 3) [ 2 3 0 1 ]
13: [ 3 2 0 1 ] (0, 1) [ 2 3 1 0 ]
14: [ 0 2 3 1 ] (0, 2) [ 0 3 1 2 ]
15: [ 2 0 3 1 ] (0, 1) [ 1 3 0 2 ]
16: [ 3 0 2 1 ] (0, 2) [ 1 3 2 0 ]
17: [ 0 3 2 1 ] (0, 1) [ 0 3 2 1 ]
18: [ 1 3 2 0 ] (0, 3) [ 3 0 2 1 ]
19: [ 2 3 1 0 ] (0, 2) [ 3 2 0 1 ]
20: [ 3 2 1 0 ] (0, 1) [ 3 2 1 0 ]
21: [ 1 2 3 0 ] (0, 2) [ 3 0 1 2 ]
22: [ 2 1 3 0 ] (0, 1) [ 3 1 0 2 ]
23: [ 3 1 2 0 ] (0, 2) [ 3 1 2 0 ]
CROSSREFS
Cf. A159880 (first element in successive permutations).
Sequence in context: A356233 A353382 A231719 * A232502 A288738 A214651
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 15 2006
EXTENSIONS
More terms from Joerg Arndt, Apr 25 2009
STATUS
approved