login
A231719
After zero, a(n) = largest m such that m! divides the difference between successive nodes A219666(n-1) and A219666(n) in the infinite trunk of the factorial beanstalk.
8
0, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 3, 2, 3, 2, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 3, 2, 3, 2, 2, 1, 2, 3, 2, 1, 1, 1
OFFSET
0,5
COMMENTS
The first 4 occurs at n=2206. The first 5 occurs at n = 361788001015 = A226061(16).
LINKS
FORMULA
a(0)=0 and for n>=1, a(n) = A055881(A230406(n)).
For all n, a(A226061(n+1)) = A232096(n).
MATHEMATICA
nn = 1200; m = 1; While[Factorial@ m < nn, m++]; m; t = TakeWhile[
Reverse@ NestList[# - Total@ IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] &, nn, 182], # <= 1000 &]; {0}~Join~Table[SelectFirst[Reverse@ Range@ 10, Divisible[t[[n]] - t[[n - 1]], #!] &], {n, 2, 87}] (* Michael De Vlieger, Jun 27 2016, Version 10.2 *)
PROG
(Scheme)
(define (A231719 n) (if (zero? n) n (A055881 (A230406 n))))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 12 2013
STATUS
approved