login
A122968
27th powers: a(n) = n^27.
6
0, 1, 134217728, 7625597484987, 18014398509481984, 7450580596923828125, 1023490369077469249536, 65712362363534280139543, 2417851639229258349412352, 58149737003040059690390169
OFFSET
0,3
LINKS
FORMULA
Totally multiplicative sequence with a(p) = p^27 for prime p. Multiplicative sequence with a(p^e) = p^(27e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-27).
Sum_{n>=1} 1/a(n) = zeta(27).
Sum_{n>=1} (-1)^(n+1)/a(n) = 67108863*zeta(27)/67108864. (End)
MATHEMATICA
lst={}; Do[AppendTo[lst, n^27], {n, 0, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
Range[0, 10]^27 (* Harvey P. Dale, Dec 17 2011 *)
CROSSREFS
KEYWORD
mult,nonn,easy
AUTHOR
STATUS
approved