|
|
A010812
|
|
24th powers: a(n) = n^24.
|
|
7
|
|
|
0, 1, 16777216, 282429536481, 281474976710656, 59604644775390625, 4738381338321616896, 191581231380566414401, 4722366482869645213696, 79766443076872509863361, 1000000000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
|
|
FORMULA
|
Totally multiplicative sequence with a(p) = p^24 for prime p. Multiplicative sequence with a(p^e) = p^(24e). - Jaroslav Krizek, Nov 01 2009
a(n) = A008456(n)^2. - Michel Marcus, Feb 27 2018
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-24).
Sum_{n>=1} 1/a(n) = zeta(24) = 236364091*Pi^24/201919571963756521875.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8388607*zeta(24)/8388608 = 1982765468311237*Pi^24/1693824136731743669452800000. (End)
|
|
MATHEMATICA
|
Range[0, 10]^24 (* Harvey P. Dale, Sep 04 2017 *)
|
|
PROG
|
(MAGMA) [n^24: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
(PARI) a(n) = n^24; \\ Michel Marcus, Feb 27 2018
|
|
CROSSREFS
|
Cf. A008456 (n^12).
Sequence in context: A016812 A016908 A017712 * A016968 A017040 A118063
Adjacent sequences: A010809 A010810 A010811 * A010813 A010814 A010815
|
|
KEYWORD
|
nonn,mult,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|