login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010810
22nd powers: a(n) = n^22.
5
0, 1, 4194304, 31381059609, 17592186044416, 2384185791015625, 131621703842267136, 3909821048582988049, 73786976294838206464, 984770902183611232881, 10000000000000000000000, 81402749386839761113321
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).
FORMULA
Totally multiplicative sequence with a(p) = p^22 for prime p. Multiplicative sequence with a(p^e) = p^(22e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-22).
Sum_{n>=1} 1/a(n) = zeta(22) = 155366*Pi^22/13447856940643125.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2097151*zeta(22)/2097152 = 3324754717*Pi^22/287777551824322560000. (End)
MATHEMATICA
Table[n^20, {n, 0, 22}] (* Amiram Eldar, Oct 09 2020 *)
PROG
(Magma) [n^22: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
(PARI) a(n) = n^22; \\ Michel Marcus, Feb 27 2018
CROSSREFS
KEYWORD
nonn,mult,easy
STATUS
approved