OFFSET
1,2
COMMENTS
Numbers of perifusenes with one internal vertex (see Cyvin et al. for precise definition).
For n>=2, a(n) is also the number of bi-wall directed polygons with perimeter 2n+2. Let us denote unit steps as follows: W=(-1,0), E=(1,0), N=(0,1), S=(0,-1). A bi-wall directed polygon is a self-avoiding polygon which can be factored as uv, where (1) u is a path which starts with an N step, ends with an S step, and can make N, E and S steps, and (2) v is a path which starts with a W step, ends with a W step, and can make W, S and E steps.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Jean-Luc Baril, José L. Ramírez, and Lina M. Simbaqueba, Counting prefixes of skew Dyck paths, J. Int. Seq., Vol. 24 (2021), Article 21.8.2.
S. J. Cyvin, F. Zhang and J. Brunvoll, Enumeration of perifusenes with one internal vertex: A complete mathematical solution, J. Math. Chem., 11 (1992), 283-292.
S. Feretic, Generating functions for bi-wall directed polygons, in: Proc. of the Seventh Int. Conf. on Lattice Path Combinatorics and Applications (eds. S. Rinaldi and S. G. Mohanty), Siena, 2010, 147-151.
FORMULA
For n>=1, a(n+1) = (3^(n+1)/(n*2^n))*Sum_{i=0..floor((n+1)/2)} ((-5/9)^i*binomial(n,i)*binomial(2*n-2*i,n-1)).
G.f.: 1/x - 3 - (1-x)/x/G(0), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
G.f.: (1-3*x - (1-5*x)*G(0))/x, where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 25 2013
a(n) ~ 5^(n-1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
D-finite with recurrence: n*a(n) + 3*(-2*n+3)*a(n-1) + 5*(n-3)*a(n-2) = 0. - R. J. Mathar, Jan 23 2020
a(n) = 2*A002212(n-1), n>1. - R. J. Mathar, Jan 23 2020
EXAMPLE
There exist a(4)=20 bi-wall directed polygons with perimeter 2*4 + 2 = 10.
MATHEMATICA
CoefficientList[Series[1 - 3*x - Sqrt[1 - 6*x + 5*x^2], {x, 0, 50}], x] (* G. C. Greubel, Mar 19 2017 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(1-3*x-sqrt(1-6*x+5*x^2))) \\ Joerg Arndt, May 27 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 24 2006
EXTENSIONS
Terms a(8)-a(20), better title, and extended edits from Svjetlan Feretic, May 24 2013
STATUS
approved