login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122737
Expansion of 1 - 3*x - sqrt(1 - 6*x + 5*x^2).
2
0, 2, 6, 20, 72, 274, 1086, 4438, 18570, 79174, 342738, 1502472, 6656436, 29756910, 134061570, 608072340, 2774495160, 12726088630, 58646299650, 271401086380, 1260750482760, 5876782098790, 27479558368170, 128861594138750, 605869334122602, 2855527261156394, 13488568550452446
OFFSET
1,2
COMMENTS
Numbers of perifusenes with one internal vertex (see Cyvin et al. for precise definition).
For n>=2, a(n) is also the number of bi-wall directed polygons with perimeter 2n+2. Let us denote unit steps as follows: W=(-1,0), E=(1,0), N=(0,1), S=(0,-1). A bi-wall directed polygon is a self-avoiding polygon which can be factored as uv, where (1) u is a path which starts with an N step, ends with an S step, and can make N, E and S steps, and (2) v is a path which starts with a W step, ends with a W step, and can make W, S and E steps.
LINKS
Jean-Luc Baril, José L. Ramírez, and Lina M. Simbaqueba, Counting prefixes of skew Dyck paths, J. Int. Seq., Vol. 24 (2021), Article 21.8.2.
S. J. Cyvin, F. Zhang and J. Brunvoll, Enumeration of perifusenes with one internal vertex: A complete mathematical solution, J. Math. Chem., 11 (1992), 283-292.
S. Feretic, Generating functions for bi-wall directed polygons, in: Proc. of the Seventh Int. Conf. on Lattice Path Combinatorics and Applications (eds. S. Rinaldi and S. G. Mohanty), Siena, 2010, 147-151.
FORMULA
For n>=1, a(n+1) = (3^(n+1)/(n*2^n))*Sum_{i=0..floor((n+1)/2)} ((-5/9)^i*binomial(n,i)*binomial(2*n-2*i,n-1)).
G.f.: 1/x - 3 - (1-x)/x/G(0), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
G.f.: (1-3*x - (1-5*x)*G(0))/x, where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 25 2013
a(n) ~ 5^(n-1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
D-finite with recurrence: n*a(n) + 3*(-2*n+3)*a(n-1) + 5*(n-3)*a(n-2) = 0. - R. J. Mathar, Jan 23 2020
a(n) = 2*A002212(n-1), n>1. - R. J. Mathar, Jan 23 2020
EXAMPLE
There exist a(4)=20 bi-wall directed polygons with perimeter 2*4 + 2 = 10.
MATHEMATICA
CoefficientList[Series[1 - 3*x - Sqrt[1 - 6*x + 5*x^2], {x, 0, 50}], x] (* G. C. Greubel, Mar 19 2017 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(1-3*x-sqrt(1-6*x+5*x^2))) \\ Joerg Arndt, May 27 2013
CROSSREFS
Sequence in context: A186996 A186576 A272485 * A338184 A348351 A150134
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 24 2006
EXTENSIONS
Terms a(8)-a(20), better title, and extended edits from Svjetlan Feretic, May 24 2013
STATUS
approved