login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122652 a(0) = 0, a(1) = 4; for n > 1, a(n) = 10*a(n-1) - a(n-2). 3
0, 4, 40, 396, 3920, 38804, 384120, 3802396, 37639840, 372596004, 3688320200, 36510605996, 361417739760, 3577666791604, 35415250176280, 350574834971196, 3470333099535680, 34352756160385604, 340057228504320360, 3366219528882817996, 33322138060323859600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Kekulé numbers for the benzenoids P_2(n).

a(n) are the values of m where A032528(m) - 1 has integer square roots. The roots are given by A001079. - Richard R. Forberg, Aug 05 2013

Numbers n such that 6*n^2 + 4 is a square. - Colin Barker, Mar 17 2014

REFERENCES

S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 283, K{P_2(n)}).

LINKS

Table of n, a(n) for n=0..20.

Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.

John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (10,-1).

FORMULA

a(n) = (1/6)*(5 + 2*sqrt(6))^n*sqrt(6) - (1/6)*sqrt(6)*(5 - 2*sqrt(6))^n, with n >= 0. - Paolo P. Lava, Oct 02 2008

G.f.: 4*x/(1 - 10*x + x^2). - Philippe Deléham, Nov 17 2008

3*a(n)^2 + 2 = 2*A001079(n)^2. - Charlie Marion, Feb 01 2013

a(n) = (2*arcsinh(sqrt(2))*sinh(2*n*arcsinh(sqrt(2)))/log(sqrt(2) + sqrt(3)))/sqrt(6). - Artur Jasinski, Aug 09 2016

a(n) = 2*A001078(n). - Bruno Berselli, Nov 25 2016

E.g.f.: sqrt(6)*exp(5*x)*sinh(2*sqrt(6)*x)/3. - Franck Maminirina Ramaharo, Jan 07 2019

MATHEMATICA

CoefficientList[Series[(4 z)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)

LinearRecurrence[{10, -1}, {0, 4}, 21] (* Jean-François Alcover, Jan 07 2019 *)

PROG

(PARI) a(n)=if(n<2, (n%2)*4, 10*a(n-1)-a(n-2)) \\ Benoit Cloitre, Sep 23 2006

CROSSREFS

Cf. A001078, A001079, A032528.

Sequence in context: A220310 A246152 A155641 * A299867 A093141 A220965

Adjacent sequences:  A122649 A122650 A122651 * A122653 A122654 A122655

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Sep 21 2006

EXTENSIONS

More terms and better definition from Benoit Cloitre, Sep 23 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 15:00 EST 2019. Contains 329845 sequences. (Running on oeis4.)