login
A122581
a(n) = a(n - 1) - 2*a(n - 2) + a(n - 3) - 4*a(n - 4) + 2*a(n - 5).
5
1, 1, 1, 1, 1, -2, -5, -2, 4, 13, 19, -5, -50, -65, -20, 118, 283, 187, -311, -914, -1001, 334, 3040, 4405, 835, -8273, -17030, -11189, 20068, 60178, 60427, -29165, -192491, -274310, -39845, 553798, 1070812, 635629, -1341437, -3836765, -3693914, 2237287, 12425356, 16921054, 1409755, -36343973
OFFSET
1,6
COMMENTS
This recursion is inspired by Ulam's early experiments in derivative recursions.
FORMULA
G.f.: x*(1+2*x^2+x^3+5*x^4)/(1-x+2*x^2-x^3+4*x^4-2*x^5). - R. J. Mathar, Nov 18 2007
MAPLE
A122581:= proc(n) option remember; if n <= 5 then 1; else A122581(n-1) -2*A122581(n-2)+A122581(n-3)+2*(-2*A122581(n-4)+A122581(n-5)); fi; end: seq(A122581(n), n=1..50) ; # R. J. Mathar, Sep 18 2007
MATHEMATICA
a[n_]:= a[n]= If[n<6, 1, a[n-1] -2*a[n-2] +a[n-3] -2*(2*a[n-4] -a[n-5])];
Table[a[n], {n, 50}]
PROG
(Sage)
@CachedFunction # a=A122581
def a(n): return 1 if (n<6) else a(n-1) -2*a(n-2) +a(n-3) -4*a(n-4) +2*a(n-5)
[a(n) for n in (1..50)] # G. C. Greubel, Nov 28 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Roger L. Bagula, Sep 19 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 01 2006
More terms from R. J. Mathar, Sep 18 2007
STATUS
approved