The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122374 Triangle in which row n gives the coefficients of det(A-xI), where A is the n X n matrix with 1's on antidiagonal and last row and column, 0's elsewhere. 0
 1, 1, -1, -1, -1, 1, -1, 1, 2, -1, 1, -1, -4, -1, 1, 1, -3, -3, 4, 2, -1, -1, 3, 7, -2, -7, -1, 1, -1, 5, 4, -11, -5, 7, 2, -1, 1, -5, -10, 9, 18, -3, -10, -1, 1, 1, -7, -5, 22, 9, -24, -7, 10, 2, -1, -1, 7, 13, -20, -34, 18, 34, -4, -13, -1, 1, -1, 9, 6, -37, -14, 58, 16, -42, -9, 13, 2, -1, 1, -9, -16, 35, 55, -50, -80, 30, 55, -5, -16, -1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS EXAMPLE Triangle starts: { 1}, { 1,  -1}, {-1,  -1,   1}, {-1,   1,   2,  -1}, { 1,  -1,  -4,  -1,   1}, { 1,  -3,  -3,   4,   2,  -1}, {-1,   3,   7,  -2,  -7,  -1,   1}, {-1,   5,   4, -11,  -5,   7,   2,  -1}, { 1,  -5, -10,   9,  18,  -3, -10,  -1,   1}, { 1,  -7,  -5,  22,   9, -24,  -7,  10,   2,  -1} ... From M. F. Hasler, Apr 30 2018: (Start) For n = 0, the determinant of the 0 X 0 matrix is 1 by convention, which yields row 0 = [ 1 ]. For n = 1, we have det [1 - x] = 1 - x, which yields row 1 = [1, -1]. For n = 2, we have det [-x, 1; 1, 1 - x] = x(x - 1) - 1 = x^2 - x - 1; in order of increasing powers this yields row 2 = [-1, -1, +1]. (End) PROG (PARI) A122374_row(n)=(-1)^n*Vecrev(charpoly(matrix(n, n, i, j, i==n||j==n||i+j==n+1), x)) \\ Yields the n-th row. - M. F. Hasler, Apr 26 2018 CROSSREFS Sequence in context: A085384 A067856 A160467 * A261960 A010121 A174726 Adjacent sequences:  A122371 A122372 A122373 * A122375 A122376 A122377 KEYWORD sign,easy,less,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 19 2006 EXTENSIONS Edited by M. F. Hasler, Apr 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 2 18:02 EDT 2020. Contains 333189 sequences. (Running on oeis4.)