login
A121553
Total area of all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
1
1, 4, 20, 122, 874, 7164, 65988, 674064, 7558416, 92276640, 1218255840, 17293495680, 262656570240, 4250077896960, 72992067321600, 1326101675673600, 25410150701107200, 512158576546713600, 10832221231772774400
OFFSET
1,2
COMMENTS
a(n)=Sum(k*A121552(n,k), k=n..1+n(n-1)/2).
REFERENCES
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
a(1)=1; a(n)=n*a(n-1)+(n-1)!*[1+n(n-1)/2] for n>=2 (see Barcucci et al. reference, p. 34).
a(n)=n![n(n-1)/4 + 1/1 + 1/2 + ... +1/n]. - Emeric Deutsch, Apr 06 2008
Conjecture D-finite with recurrence a(n) +(-2*n-3)*a(n-1) +(n^2+4*n-3)*a(n-2) +2*(-n^2+n+3)*a(n-3) +2*(n-3)^2*a(n-4)=0. - R. J. Mathar, Jul 22 2022
MAPLE
a[1]:=1: for n from 2 to 22 do a[n]:=n*a[n-1]+(n-1)!*(1+n*(n-1)/2) od: seq(a[n], n=1..22);
CROSSREFS
Cf. A121552.
Sequence in context: A020028 A020118 A009351 * A067116 A347339 A067121
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 08 2006
STATUS
approved