OFFSET
1,2
COMMENTS
a(n) = Sum_{k=1..n} k*A121548(n,k).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2000
FORMULA
G.f.: (Sum_{i>=2} z^Fibonacci(i))/(1 - Sum_{i>=2} z^Fibonacci(i))^2.
EXAMPLE
a(4)=19 because the compositions of 8 into Fibonacci numbers are [1,3],[2,2],[3,1],[1,1,2],[1,2,1],[2,1,1] and [1,1,1,1], having a total of 2+2+2+3+3+3+4 = 19 parts.
MAPLE
with(combinat): g:=sum(z^fibonacci(i), i=2..20)/(1-sum(z^fibonacci(i), i=2..20))^2: gser:=series(g, z=0, 48): seq(coeff(gser, z, n), n=1..35);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 07 2006
STATUS
approved