OFFSET
1,8
COMMENTS
F(n,m) = n!*T(n,m)/m! is a composite (akin to Riordan arrays) of F(x)=arcsin(x) and (F(x))^m = sum{n=m..infinity} F(n,m)*x^n, and for o.g.f. G(x), G(arcsin(x)) = g(0) +sum_{n=1..infinity} sum_{m=1..n} F(n,m)*g(m)*x^n, see the preprint. - Vladimir Kruchinin, Feb 10 2011
The unsigned matrix inverse is A136630 (with a different offset) - Peter
Bala, Feb 23 2011.
Also the Bell transform of A177145. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
LINKS
Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
FORMULA
T(n,m)= ((n-1)!/(m-1)!) *sum_{k=1..n-m} sum_{j=1..k} binomial(k,j) *(2^(1-j) /(n-m+j)!) *sum{i=0..floor(j/2)} (-1)^((n-m)/2-i-j) *binomial(j,i) *(j-2*i)^(n-m+j) *binomial(k+n-1,n-1), n>m and even(n-m). [From Vladimir Kruchinin, Feb 10 2011]
From Peter Bala, Aug 29 2012: (Start)
See A182971 for a version of the row reverse of this triangle.
Even-indexed row polynomial R(2*n,x) = x^2*prod(k=1..n-1, (x^2 + (2*k)^2) ).
Odd-indexed row polynomial R(2*n+1,x) = x*prod(k=1..n, (x^2 + (2*k-1)^2) ). See Berndt p.263. (End)
EXAMPLE
Triangle starts:
1;
0,1;
1,0,1;
0,4,0,1;
9,0,10,0,1;
0,64,0,20,0,1;
Row polynomials R(6,x) = x^2*(x^2 + 2^2)*(x^2 + 4^2) = 64*x^2 + 20*x^4 + x^6 and
R(7,x) = x*(x^2 + 1)*(x^2 + 3^2)*(x^2 + 5^2) = 225*x + 259*x^3 + 35*x^5 + x^7. - Peter Bala, Aug 29 2012
MAPLE
g:=exp(y*arcsin(x))-1: gser:=simplify(series(g, x=0, 15)): for n from 1 to 12 do P[n]:=sort(n!*coeff(gser, x, n)) od: for n from 1 to 12 do seq(coeff(P[n], y, k), k=1..n) od; # yields sequence in triangular form
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> `if`(n::odd, 0, doublefactorial(n-1)^2), 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[OddQ[#], 0, (# - 1)!!^2] &, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 28 2006
STATUS
approved