login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006228 Expansion of exp(arcsin(x)).
(Formerly M1523)
15
1, 1, 1, 2, 5, 20, 85, 520, 3145, 26000, 204425, 2132000, 20646925, 260104000, 2993804125, 44217680000, 589779412625, 9993195680000, 151573309044625, 2898026747200000, 49261325439503125, 1049085682486400000, 19753791501240753125, 463695871658988800000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

H. S. Uhler, On the numerical value of i^i, Amer. Math. Monthly, 28 (1921), 114-116.

Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.

FORMULA

i even: a_i = Product_{j=1..i/2-1} 1 + 4j^2, i odd: a_i = Product_{j=1..(i-1)/2} 2 + 4j(j-1). - Cris Moore (moore(AT)santafe.edu), Jan 31 2001

a(0)=1, a(1)=1, a(n) = (1+(n-2)^2)*a(n-2) for n >= 2. Jaume Oliver Lafont, Oct 24 2009

a(n) = (n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(C(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*C(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!, i=0..floor(j/2))*(-1)^(k-j), j=1..k))*C(k+n-1,n-1), k=1..n-m))/(m-1)!, m=1..n), n>0. - Vladimir Kruchinin, Sep 12 2010

E.g.f.: exp(arcsin(x))=1+2z/(H(0)-z); H(k)=4k+2+z^2*(4k^2+8k+5)/H(k+1), where z=x/((1-x^2)^1/2); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011

a(n) ~ (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 23 2013

a(n) = 2^(n-2) * (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * GAMMA((n-I)/2) * GAMMA((n+I)/2) / Pi. - Vaclav Kotesovec, Nov 06 2014

MAPLE

a:= n-> n!*coeff(series(exp(arcsin(x)), x, n+1), x, n):

seq(a(n), n=0..25);  # Alois P. Heinz, Aug 17 2018

MATHEMATICA

Distribute[ CoefficientList[ Series[ E^ArcSin[x], {x, 0, 21}], x] * Table[ n!, {n, 0, 21}]] (* Robert G. Wilson v, Feb 10 2004 *)

With[{nn=30}, CoefficientList[Series[Exp[ArcSin[x]], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Feb 26 2013 *)

Table[FullSimplify[2^(n-2) * (Exp[Pi/2]-(-1)^n*Exp[-Pi/2]) * Gamma[(n-I)/2] * Gamma[(n+I)/2] / Pi], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2014 *)

PROG

(Maxima) a(n):=(n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(binomial(k, j)*2^(1-j)*sum((-1)^((n-m)/2-i)*binomial(j, i)*(j-2*i)^(n-m+j)/(n-m+j)!, i, 0, floor(j/2))*(-1)^(k-j), j, 1, k))*binomial(k+n-1, n-1), k, 1, n-m))/(m-1)!, m, 1, n); /* Vladimir Kruchinin, Sep 12 2010 */

CROSSREFS

Bisections are expansions of sin(arcsinh(x)) and cos(arcsinh(x)).

Bisections are A101927 and A101928.

Cf. A002019.

Cf. A166741, A166748. - Jaume Oliver Lafont, Oct 24 2009

Sequence in context: A192101 A012768 A170947 * A190656 A262166 A262167

Adjacent sequences:  A006225 A006226 A006227 * A006229 A006230 A006231

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jeffrey Shallit

EXTENSIONS

More terms from Christian G. Bower

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 07:07 EST 2020. Contains 331317 sequences. (Running on oeis4.)