login
A121228
Number of ways to write the numbers 1 through 3n on the faces of three n-sided dice, so that the 1st die beats the 2nd with probability > 1/2, the 2nd beats the 3rd with probability > 1/2 and the 3rd beats the 1st with probability > 1/2.
0
0, 0, 5, 13, 1732, 10705, 697733, 6539451, 320055263, 3757649717, 159846296757, 2168151028368, 84710946309286, 1271782693566515, 46887132021495098, 758979280972648162, 26825721979648877998, 460233727565745799839, 15752977776622170172890, 283061660420599350271338
OFFSET
1,3
REFERENCES
M. Gardner, "Mathematical Games: The Paradox of the Nontransitive Dice and the Elusive Principle of Indifference." Sci. Amer. 223, 110-114, Dec. 1970.
LINKS
Shalosh B. Ekhad and Doron Zeilberger, A Treatise on Sucker's Bets, arXiv preprint arXiv:1710.10344 [math.CO], 2017.
Lee J. Stemkoski, Nontransitive Dice
Eric Weisstein's World of Mathematics, Efron's Dice.
EXAMPLE
a(3)=5:
Set 1:
Die 1: 1 5 9
Die 2: 3 4 8
Die 3: 2 6 7
Set 2:
Die 1: 1 7 8
Die 2: 4 5 6
Die 3: 2 3 9
Set 3:
Die 1: 1 7 8
Die 2: 3 5 6
Die 3: 2 4 9
Set 4:
Die 1: 1 6 8
Die 2: 4 5 7
Die 3: 2 3 9
Set 5:
Die 1: 1 6 8
Die 2: 3 5 7
Die 3: 2 4 9
CROSSREFS
Sequence in context: A153374 A247789 A012032 * A201260 A012173 A009143
KEYWORD
nonn
AUTHOR
Mikhail Dvorkin (dvorkin_m(AT)yahoo.com), Dec 11 2006
EXTENSIONS
a(1) corrected by Jon E. Schoenfield, May 19 2007
a(6) and a(7) from Jon E. Schoenfield, May 19 2007
a(8) from Jon E. Schoenfield, May 23 2007
Further terms from the Ekhad-Zeilberger paper added by N. J. A. Sloane, Dec 26 2017
a(13)-a(20) from Bert Dobbelaere, Feb 24 2021
STATUS
approved