login
A120952
G.f. A(x) satisfies the condition that both series_reversion(x/A(x))/x (cf. A120953) and series_reversion(x*A(x))/x (cf. A120954) have zeros for every other coefficient after initial terms.
2
1, 1, 2, -7, -58, 369, 4572, -40188, -618694, 6915257, 123744242, -1683380975, -34017509348, 546799381140, 12298020900128, -228437416454904, -5666681561083638, 119532757362516473, 3247637352945151374, -76715605444589999941, -2268946268485834353378
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = G(x/A(x)) where G(x) = g.f. of A120953. G.f. satisfies: A(x) = 1/H(x*A(x)) where H(x) = g.f. of A120954.
EXAMPLE
A(x) = 1 + x + 2*x^2 - 7*x^3 - 58*x^4 + 369*x^5 + 4572*x^6 --++...
series_reversion(x/A(x))/x = 1 + x + 3*x^2 - 65*x^4 + 4998*x^6 -+...
series_reversion(x*A(x))/x = 1 - x + 12*x^3 - 663*x^5 + 70992*x^7 -+...
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==0, A=concat(A, t); A[ #A]=subst(Vec(serreverse(x*Ser(A)))[ #A], t, 0))); A[n+1]}
CROSSREFS
Sequence in context: A105183 A269994 A023364 * A270404 A270315 A083810
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 19 2006
STATUS
approved