This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120954 G.f. A(x) equals series_reversion(x*F(x))/x where F(x) is the g.f. of A120952; a(2*n) = 0 for n>=1. 2
 1, -1, 0, 12, 0, -663, 0, 70992, 0, -11828220, 0, 2788943940, 0, -882129138002, 0, 360987922171968, 0, -185952081073194180, 0, 117927296241009908400, 0, -90382838151345795658647, 0, 82413028950526359510418224, 0, -88207652178334097954952215796, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA G.f. satisfies: A(x) = 1/F(x*A(x)) and F(x) = 1/A(x*F(x)) where F(x) = g.f. of A120952. EXAMPLE A(x) = 1 - x + 12*x^3 - 663*x^5 + 70992*x^7 - 11828220*x^9 +-... The g.f. of A120952 is: F(x) = 1 + x + 2*x^2 - 7*x^3 - 58*x^4 + 369*x^5 + 4572*x^6 --++... PROG (PARI) {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==0, A=concat(A, t); A[ #A]=subst(Vec(serreverse(x*Ser(A)))[ #A], t, 0))); Vec(serreverse(x*Ser(A)))[n+1]} CROSSREFS Cf. A120952, A120953. Sequence in context: A119530 A012332 A012455 * A012337 A012339 A012448 Adjacent sequences:  A120951 A120952 A120953 * A120955 A120956 A120957 KEYWORD sign AUTHOR Paul D. Hanna, Jul 19 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .