login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120914
Cascadence of (1+2x)^2; a triangle, read by rows of 2n+1 terms, that retains its original form upon convolving each row with [1,4,4] and then letting excess terms spill over from each row into the initial positions of the next row such that only 2n+1 terms remain in row n for n>=0.
4
1, 4, 4, 4, 20, 36, 32, 16, 20, 116, 256, 288, 212, 144, 80, 116, 720, 1776, 2388, 2144, 1504, 1012, 784, 464, 720, 4656, 12372, 18800, 19632, 15604, 10848, 7648, 5712, 4736, 2880, 4656, 30996, 86912, 144320, 169332, 151792, 113456, 79696, 58176
OFFSET
0,2
COMMENTS
More generally, the cascadence of polynomial F(x) of degree d, F(0)=1, is a triangle with d*n+1 terms in row n where the g.f. of the triangle, A(x,y), is given by: A(x,y) = ( x*H(x) - y*H(x*y^d) )/( x*F(y) - y ), where H(x) satisfies: H(x) = G*H(x*G^d)/x and G satisfies: G = x*F(G) so that G = series_reversion(x/F(x)); also, H(x) is the g.f. of column 0.
FORMULA
G.f.: A(x,y) = ( x*H(x) - y*H(x*y^2) )/( x*(1+2y)^2 - y ), where H(x) satisfies: H(x) = G*H(x*G^2)/x and G satisfies: G = x*(1 + 2G)^2 ; also, H(x) is the g.f. of column 0.
EXAMPLE
Triangle begins:
1;
4, 4, 4;
20, 36, 32, 16, 20;
116, 256, 288, 212, 144, 80, 116;
720, 1776, 2388, 2144, 1504, 1012, 784, 464, 720;
4656, 12372, 18800, 19632, 15604, 10848, 7648, 5712, 4736, 2880, 4656;
Convolution of [1,4,4] with each row produces:
[1,4,4]*[1] = [1,4,4];
[1,4,4]*[4,4,4] = [4,20,36,32,16];
[1,4,4]*[20,36,32,16,20] = [20,116,256,288,212,144,80];
[1,4,4]*[116,256,288,212,144,80,116] =
[116,720,1776,2388,2144,1504,1012,784,464];
These convoluted rows, when concatenated, yield the sequence:
1,4,4, 4,20,36,32,16, 20,116,256,288,212,144,80, 116,720,1776,2388,...
which equals the concatenated rows of this original triangle:
1, 4,4,4, 20,36,32,16,20, 116,256,288,212,144,80,116, 720,1776,2388,...
PROG
(PARI) /* Generate Triangle by the Recurrence: */
{T(n, k)=if(2*n<k || k<0, 0, if(n==0 && k==0, 1, if(k==0, T(n-1, 1)+4*T(n-1, 0), if(k==2*n, T(n, 0), T(n-1, k+1)+4*T(n-1, k)+4*T(n-1, k-1)))))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Generate Triangle by the G.F.: */
{T(n, k)=local(A, F=1+4*x+4*x^2, d=2, G=x, H=1+x, S=ceil(log(n+1)/log(d+1))); for(i=0, n, G=x*subst(F, x, G+x*O(x^n))); for(i=0, S, H=subst(H, x, x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H, x, x*y^d +x*O(x^n)))/(x*subst(F, x, y)-y); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A120915 (column 0), A120917 (central terms), A120918 (row sums), A000108 (Catalan); variants: A092683, A092686, A120894, A120898, A120919.
Sequence in context: A034896 A320970 A216871 * A303397 A024949 A362374
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Jul 17 2006
STATUS
approved