login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120304 Catalan number minus 2, or ((2n)!/(n!*(n+1)!) - 2). 10
-1, -1, 0, 3, 12, 40, 130, 427, 1428, 4860, 16794, 58784, 208010, 742898, 2674438, 9694843, 35357668, 129644788, 477638698, 1767263188, 6564120418, 24466267018, 91482563638, 343059613648, 1289904147322, 4861946401450, 18367353072150, 69533550916002, 263747951750358 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Prime p divides a(p). Prime p divides a(p+1) for p > 2. Prime p divides a(p-1)/2) for p = 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, ... = A002144(n) except 5. Pythagorean primes: primes of form 4n+1. Also A002313(n) except 2, 5. Primes congruent to 1 or 2 modulo 4; or, primes of form x^2+y^2; or, -1 is a square mod p. p^2 divides a(p^2) and a(p^2+1) for all prime p.

For n >= 2, number of Dyck paths of semilength n such that all four consecutive step patterns of length 2 occur at least once; a(3)=3: UDUUDD, UUDDUD, UUDUDD. For each n two paths do not satisfy the condition: U^{n}D^{n} and (UD)^n. - Alois P. Heinz, Jun 13 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.

Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2. [The sequence here begins 1, 1, 1, 3, 12, 40, 130, 427, 1428, 4860, ...]

FORMULA

a(n) = (2n)!/(n!*(n+1)!) - 2. a(n) = A000108(n) - 2.

(n+1)*a(n) + 2*(-3*n+1)*a(n-1) + (9*n-13)*a(n-2) + 2*(-2*n+5)*a(n-3) = 0. - R. J. Mathar, May 30 2014

MAPLE

a:= n-> binomial(2*n, n)/(n+1) -2:

seq(a(n), n=0..30);  # Alois P. Heinz, Jun 13 2014

MATHEMATICA

Table[(2n)!/n!/(n+1)!-2, {n, 0, 30}]

PROG

(MuPAD) combinat::dyckWords::count(n)-2 $ n = 0..38; // Zerinvary Lajos, May 08 2008

(PARI) a(n) = binomial(2*n, n)/(n+1)-2; \\ Altug Alkan, Dec 17 2017

CROSSREFS

Cf. A000108, A002144, A002313, A003655.

Cf. A243882, A243820.

Sequence in context: A247002 A027991 * A289652 A026071 A102839 A050182

Adjacent sequences:  A120301 A120302 A120303 * A120305 A120306 A120307

KEYWORD

sign

AUTHOR

Alexander Adamchuk, Jul 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 20 17:30 EST 2018. Contains 297960 sequences.