login
A120056
Expansion of g.f. A(x) satisfying A(x)^2 = (1+x) * A(x*A(x)) with A(0) = 1.
3
1, 1, 1, 3, 14, 91, 737, 7096, 78766, 987842, 13797282, 212285511, 3567147508, 65001800879, 1276876433466, 26901212485406, 605144725934525, 14477882030623891, 367106501841287465, 9834718739970491625
OFFSET
0,4
COMMENTS
Note that if F(x)^2 = (1+x) * F(x*F(x)) with F(0) = 0, then F(x) is the g.f. of A367386. - Paul D. Hanna, Jan 08 2024
LINKS
FORMULA
a(n) ~ c * n^n / (exp(n) * (log(2))^n), where c = 0.8876659274678... . - Vaclav Kotesovec, Aug 08 2014
From Paul D. Hanna, Jan 08 2024: (Start)
G.f. A(x) = Sum_{n>=0} a(n)*x^n and B(x) = x*A(x) and B(x) = x*A(x) satisfy the following formulas.
(1) A(x)^2 = (1+x) * A(x*A(x)).
(2) A(x) = (1+x)^(1/2) * (1 + B(x))^(1/4) * (1 + B(B(x)))^(1/8) * (1 + B(B(B(x))))^(1/16) * (1 + B(B(B(B(x)))))^(1/32) * ..., an infinite product involving iterations of B(x) = x*A(x).
(3.a) B(B(x)) = x*A(x)^3 / (1+x).
(3.b) B(B(B(x))) = x*A(x)^7 / ((1+x)^3 * (1 + x*A(x))).
(3.c) B(B(B(B(x)))) = x*A(x)^15 / ((1+x)^7 * (1 + x*A(x))^3 * (1 + x*A(x)^3/(1+x))).
(3.d) B(B(B(B(B(x))))) = x*A(x)^31 / ((1+x)^15 * (1+x*A(x))^7 * (1 + x*A(x)^3/(1+x))^3 * (1 + x*A(x)^7/((1+x)^3*(1+x*A(x))))).
The compositions of g.f. A(x) with the iterations of B(x) = x*A(x) begin
(4.a) A(B(x)) = A(x)^2 / (1+x).
(4.b) A(B(B(x))) = A(x)^4 / ((1+x)^2 * (1 + x*A(x))).
(4.c) A(B(B(B(x)))) = A(x)^8 / ((1+x)^4 * (1 + x*A(x))^2 * (1 + x*A(x)^3/(1+x))).
(4.d) A(B(B(B(B(x))))) = A(x)^16 / ((1+x)^8 * (1+x*A(x))^4 * (1 + x*A(x)^3/(1+x))^2 * (1 + x*A(x)^7/((1+x)^3*(1+x*A(x))))).
(End)
EXAMPLE
A(x) = 1 + x + x^2 + 3*x^3 + 14*x^4 + 91*x^5 + 737*x^6 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 8*x^3 + 35*x^4 + 216*x^5 + 1693*x^6 +...
A(x*A(x)) = 1 + x + 2*x^2 + 6*x^3 + 29*x^4 + 187*x^5 + 1506*x^6 +...
PROG
(PARI) {a(n)=local(A); if(n<1, n==0, A=1+x; for(i=1, n, A=subst(A, x, x*A+x*O(x^n))*(1+x)/A); polcoeff(A, n))}
CROSSREFS
Sequence in context: A202294 A029767 A215475 * A125788 A183611 A259903
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 05 2006
STATUS
approved