login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119870
Number of vertices of the root-n Waterman polyhedron.
9
12, 6, 24, 12, 24, 32, 48, 54, 36, 24, 48, 24, 72, 72, 48, 60, 48, 54, 72, 72, 72, 72, 48, 56, 132, 96, 120, 96, 72, 72, 96, 102, 96, 96, 120, 84, 120, 144, 96, 72, 120, 72, 168, 168, 120, 120, 144, 168, 108, 126, 168, 72, 144, 152, 144, 144, 192, 120, 144, 144
OFFSET
1,1
COMMENTS
The root-n Waterman polyhedron is the convex hull of the intersection of a closed ball of radius sqrt(2*n) with the lattice of sphere-center points of a cubic close packing. [Probably the f.c.c. lattice is intended here. - N. J. A. Sloane, Aug 09 2006]
The basic sphere center series of Waterman polyhedra is obtained by choosing a sphere center as the center of the closed ball. Other choices are possible. An example is given in A119874 ... A119878. For n in A055039 no lattice points are hit; the corresponding polyhedra are the same as for n-1.
CROSSREFS
Cf. A119870, A119875 [vertices of void-centered Waterman polyhedron].
Cf. A055039 [missing polyhedra]. Properties of Waterman polyhedra: A119870 [vertices], A119871 [faces], A119872 [edges], A119873 [volume]. Waterman polyhedra with different center: A119874, A119875, A119876, A119877, A119878.
Sequence in context: A173853 A040135 A004015 * A234516 A177690 A038332
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, May 26 2006
STATUS
approved