OFFSET
0,1
COMMENTS
LINKS
W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
EXAMPLE
c = 0.858267656461002055792260308433375148664905190083506778667684867..
Continued fraction (A119813):
c = [0;1,6,18,1032,16777344,288230376151842816,...]
where partial quotients are given by:
The following are equivalent expressions for the constant:
where [x] = floor(x).
These series illustrate the above expressions:
(1) c = 0/2^1 + 1/2^2 + 2/2^3 + 2/2^4 + 3/2^5 + 4/2^6 + 4/2^7 +...
(2) c = 1/2^1 + 1/2^2 + 1/2^4 + 1/2^5 + 1/2^7 + 1/2^8 + 1/2^9 +...
(3) c = 1/2^1 + 1/2^2 + 0/2^3 + 1/2^4 + 1/2^5 + 0/2^6 + 1/2^7 +...
PROG
(PARI) {a(n)=local(t=sqrt(2)/2, x=sum(m=1, 10*n, floor(m*t)/2^m)); floor(10^n*x)%10}
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, May 26 2006
EXTENSIONS
Removed leading zero and corrected offset R. J. Mathar, Feb 05 2009
STATUS
approved