login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080764 First differences of A049472, floor(n/sqrt(2)). 40
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Fixed point of the morphism 0->1, 1->110. - Benoit Cloitre, May 31 2004

As binary constant 0.1101101110110... = 0.85826765646... (A119812), see Fxtbook link. - Joerg Arndt, May 15 2011

Characteristic word with slope 1/sqrt(2) [see J. L. Ramirez et al.]. - R. J. Mathar, Jul 09 2013

From Peter Bala, Nov 22 2013: (Start)

Sturmian word: equals the limit word S(infinity) where S(0) = 0, S(1) = 1 and for n >= 1, S(n+1) = S(n)S(n)S(n-1).

More generally, for k = 0,1,2,..., we can define a sequence of words S_k(n) by S_k(0) = 0, S_k(1) = 0...01 (k 0's) and for n >= 1, S_k(n+1) = S_k(n)S_k(n)S_k(n-1). Then the limit word S_k(infinity) is a Sturmian word whose terms are given by a(n) = floor((n + 2)/(k + sqrt(2))) - floor((n + 1)/(k + sqrt(2))).

This sequence corresponds to the case k = 0. See A159684 (case k = 1) and A171588 (case k = 2). Compare with the Fibonacci words A005614, A221150, A221151 and A221152. See also A230901. (End)

For n > 0: a(A001951(n)) = 1, a(A001952(n)) = 0. - Reinhard Zumkeller, Jul 03 2015

Binary complement of the Pell word A171588. - Michel Dekking, Feb 22 2018

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Joerg Arndt, Matters Computational (The Fxtbook), section 38.12, pp. 757-758.

Wikipedia, Sturmian word

Index entries for sequences that are fixed points of mappings

FORMULA

a(n) = floor((n+2)*sqrt(2)/2) - floor((n+1)*sqrt(2)/2).

a(n) = A188295(n+2) for all n in Z. - Michael Somos, Aug 19 2018

EXAMPLE

From Peter Bala, Nov 22 2013: (Start)

The first few Sturmian words S(n) are

S(0) = 0

S(1) = 1

S(2) = 110

S(3) = 110 110 1

S(4) = 1101101 1101101 110

S(5) = 11011011101101110 11011011101101110 1101101

The lengths of the words are [1, 1, 3, 7, 17, 41, ...] = A001333.  (End)

MAPLE

A080764 := proc(n)

    alpha := 1/sqrt(2) ;

    floor((n+2)*alpha)-floor((n+1)*alpha) ;

end proc: # R. J. Mathar, Jul 09 2013

MATHEMATICA

Nest[ Flatten[ # /. {0 -> 1, 1 -> {1, 1, 0}}] &, {1}, 7] (* Robert G. Wilson v, Apr 16 2005 *)

NestList[ Flatten[ # /. {0 -> {1}, 1 -> {1, 0, 1}}] &, {1}, 5] // Flatten (* or *)

t = Table[Floor[n/Sqrt[2]], {n, 111}]; Drop[t, 1] - Drop[t, -1] (* Robert G. Wilson v, Nov 03 2005 *)

a[ n_] := With[{m = n + 1}, Floor[(m + 1) / Sqrt[2]] - Floor[m / Sqrt[2]]]; (* Michael Somos, Aug 19 2018 *)

PROG

(Haskell)

a080764 n = a080764_list !! n

a080764_list = tail $ zipWith (-) (tail a049472_list) a049472_list

-- Reinhard Zumkeller, Jul 03 2015

(PARI) {a(n) = n++; my(k = sqrtint(n*n\2)); n*(n+2) > 2*k*(k+2)}; /* Michael Somos, Aug 19 2018 */

CROSSREFS

Cf. A005614, A159684, A171588, A221150, A221151, A221152, A230901.

Cf. A049472, A001951, A001952, A188295.

Sequence in context: A015527 A276395 A232750 * A291137 A285421 A285431

Adjacent sequences:  A080761 A080762 A080763 * A080765 A080766 A080767

KEYWORD

nonn,easy

AUTHOR

Matthew Vandermast, Mar 25 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 06:32 EDT 2019. Contains 323478 sequences. (Running on oeis4.)