This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080764 First differences of A049472, floor(n/sqrt(2)). 40
 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Fixed point of the morphism 0->1, 1->110. - Benoit Cloitre, May 31 2004 As binary constant 0.1101101110110... = 0.85826765646... (A119812), see Fxtbook link. - Joerg Arndt, May 15 2011 Characteristic word with slope 1/sqrt(2) [see J. L. Ramirez et al.]. - R. J. Mathar, Jul 09 2013 From Peter Bala, Nov 22 2013: (Start) Sturmian word: equals the limit word S(infinity) where S(0) = 0, S(1) = 1 and for n >= 1, S(n+1) = S(n)S(n)S(n-1). More generally, for k = 0,1,2,..., we can define a sequence of words S_k(n) by S_k(0) = 0, S_k(1) = 0...01 (k 0's) and for n >= 1, S_k(n+1) = S_k(n)S_k(n)S_k(n-1). Then the limit word S_k(infinity) is a Sturmian word whose terms are given by a(n) = floor((n + 2)/(k + sqrt(2))) - floor((n + 1)/(k + sqrt(2))). This sequence corresponds to the case k = 0. See A159684 (case k = 1) and A171588 (case k = 2). Compare with the Fibonacci words A005614, A221150, A221151 and A221152. See also A230901. (End) For n > 0: a(A001951(n)) = 1, a(A001952(n)) = 0. - Reinhard Zumkeller, Jul 03 2015 Binary complement of the Pell word A171588. - Michel Dekking, Feb 22 2018 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 Joerg Arndt, Matters Computational (The Fxtbook), section 38.12, pp. 757-758. Wikipedia, Sturmian word FORMULA a(n) = floor((n+2)*sqrt(2)/2) - floor((n+1)*sqrt(2)/2). a(n) = A188295(n+2) for all n in Z. - Michael Somos, Aug 19 2018 EXAMPLE From Peter Bala, Nov 22 2013: (Start) The first few Sturmian words S(n) are S(0) = 0 S(1) = 1 S(2) = 110 S(3) = 110 110 1 S(4) = 1101101 1101101 110 S(5) = 11011011101101110 11011011101101110 1101101 The lengths of the words are [1, 1, 3, 7, 17, 41, ...] = A001333.  (End) MAPLE A080764 := proc(n)     alpha := 1/sqrt(2) ;     floor((n+2)*alpha)-floor((n+1)*alpha) ; end proc: # R. J. Mathar, Jul 09 2013 MATHEMATICA Nest[ Flatten[ # /. {0 -> 1, 1 -> {1, 1, 0}}] &, {1}, 7] (* Robert G. Wilson v, Apr 16 2005 *) NestList[ Flatten[ # /. {0 -> {1}, 1 -> {1, 0, 1}}] &, {1}, 5] // Flatten (* or *) t = Table[Floor[n/Sqrt[2]], {n, 111}]; Drop[t, 1] - Drop[t, -1] (* Robert G. Wilson v, Nov 03 2005 *) a[ n_] := With[{m = n + 1}, Floor[(m + 1) / Sqrt[2]] - Floor[m / Sqrt[2]]]; (* Michael Somos, Aug 19 2018 *) PROG (Haskell) a080764 n = a080764_list !! n a080764_list = tail \$ zipWith (-) (tail a049472_list) a049472_list -- Reinhard Zumkeller, Jul 03 2015 (PARI) {a(n) = n++; my(k = sqrtint(n*n\2)); n*(n+2) > 2*k*(k+2)}; /* Michael Somos, Aug 19 2018 */ CROSSREFS Cf. A005614, A159684, A171588, A221150, A221151, A221152, A230901. Cf. A049472, A001951, A001952, A188295. Sequence in context: A015527 A276395 A232750 * A291137 A285421 A285431 Adjacent sequences:  A080761 A080762 A080763 * A080765 A080766 A080767 KEYWORD nonn,easy AUTHOR Matthew Vandermast, Mar 25 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 06:32 EDT 2019. Contains 323478 sequences. (Running on oeis4.)