login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119407 Number of nonempty subsets of {1,2,...,n} with no gap of length greater than 4 (a set S has a gap of length d if a and b are in S but no x with a < x < b is in S, where b-a=d). 3
1, 3, 7, 15, 31, 62, 122, 238, 462, 894, 1727, 3333, 6429, 12397, 23901, 46076, 88820, 171212, 330028, 636156, 1226237, 2363655, 4556099, 8782171, 16928187, 32630138, 62896622, 121237146, 233692122, 450456058, 868281979, 1673667337, 3226097529, 6218502937, 11986549817, 23104817656 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The numbers of subsets of {1,2,...,n} with no gap of length greater than d, for d=1,2 and 3, seem to be given in A000217, A001924 and A062544, respectively.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (3, -2, 0, 0, -1, 1).

FORMULA

G.f. for number of nonempty subsets of {1,2,...,n} with no gap of length greater than d is x/((1-x)*(1-2*x+x^(d+1))). - Vladeta Jovovic, Apr 27 2008

From Michael Somos, Dec 28 2012: (Start)

G.f.: x/((1-x)^2*(1-x-x^2-x^3-x^4)) = x/((1-x)*(1-2*x+x^5)).

First difference is A107066. (End)

EXAMPLE

G.f. = x + 3*x^2 + 7*x^3 + 15*x^4 + 31*x^5 + 62*x^6 + 122*x^7 + 238*x^8 + 462*x^9 + ...

MATHEMATICA

Rest@CoefficientList[Series[x/((1-x)*(1-2*x+x^5)), {x, 0, 40}], x] (* G. C. Greubel, Jun 05 2019 *)

LinearRecurrence[{3, -2, 0, 0, -1, 1}, {1, 3, 7, 15, 31, 62}, 40] (* Harvey P. Dale, Dec 04 2019 *)

PROG

(PARI) {a(n) = if( n<0, n = -n; polcoeff( x^5 / ((1 - x)^2 * (1 + x + x^2 + x^3 - x^4)) + x * O(x^n), n), polcoeff( x / ((1 - x)^2 * (1 - x - x^2 - x^3 - x^4)) + x * O(x^n), n))} /* Michael Somos, Dec 28 2012 */

(PARI) my(x='x+O('x^40)); Vec(x/((1-x)*(1-2*x+x^5))) \\ G. C. Greubel, Jun 05 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x/((1-x)*(1-2*x+x^5)) )); // G. C. Greubel, Jun 05 2019

(Sage) a=(x/((1-x)*(1-2*x+x^5))).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jun 05 2019

CROSSREFS

Cf. A000217, A001924, A062544, A107066.

Sequence in context: A218281 A057703 A006739 * A224521 A269167 A261586

Adjacent sequences:  A119404 A119405 A119406 * A119408 A119409 A119410

KEYWORD

nonn,changed

AUTHOR

John W. Layman, Jul 25 2006

EXTENSIONS

Terms a(25) onward added by G. C. Greubel, Jun 05 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 09:32 EST 2019. Contains 329862 sequences. (Running on oeis4.)