login
A118881
Square of sum of decimal digits of n.
10
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 36, 49, 64, 81, 100, 121, 144
OFFSET
0,3
COMMENTS
a(k) = k iff k = 0, 1, 81; also, the only solution to the double equation a(k) = m and a(m) = k with k < m is (169, 256) (proof in Diophante link, 2ème jonglerie). - Bernard Schott, Mar 08 2021
LINKS
Michael Penn, squaring the sum of digits, YouTube video, 2021.
FORMULA
a(n) = A007953(n)^2. [R. J. Mathar, Apr 22 2010]
EXAMPLE
From R. J. Mathar, Jul 08 2012: (Start)
Trajectories of the map x->a(x), A177148:
1 ->1 ->1 ->1 ->1 ->1 ->1 ->1 ->1 ->...
2 ->4 ->16 ->49 ->169 ->256 ->169 ->256 ->169 ->...
3 ->9 ->81 ->81 ->81 ->81 ->81 ->81 ->81 ->...
4 ->16 ->49 ->169 ->256 ->169 ->256 ->169 ->256 ->...
5 ->25 ->49 ->169 ->256 ->169 ->256 ->169 ->256 ->...
6 ->36 ->81 ->81 ->81 ->81 ->81 ->81 ->81 ->...
7 ->49 ->169 ->256 ->169 ->256 ->169 ->256 ->169 ->...
8 ->64 ->100 ->1 ->1 ->1 ->1 ->1 ->1 ->... (End)
MAPLE
read("transforms") :
A118881 := proc(n)
digsum(n)^2 ;
end proc: # R. J. Mathar, Jul 08 2012
MATHEMATICA
Table[Total[IntegerDigits[n]]^2, {n, 0, 70}] (* Harvey P. Dale, Jul 31 2012 *)
PROG
(PARI) a(n) = sumdigits(n)^2; \\ Michel Marcus, Mar 08 2021
(Python)
def a(n): return sum(map(int, str(n)))**2
print([a(n) for n in range(67)]) # Michael S. Branicky, Nov 19 2021
CROSSREFS
Cf. A007953.
Sequence in context: A062331 A069940 A153211 * A370812 A277342 A098733
KEYWORD
base,easy,nonn
AUTHOR
Giovanni Teofilatto, May 25 2006
STATUS
approved