login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118246 Number of partitions of n such that even parts occur at most once and odd parts occur at most twice. 1
1, 1, 2, 2, 3, 4, 6, 8, 10, 12, 16, 20, 26, 32, 40, 48, 59, 72, 88, 106, 128, 152, 182, 216, 258, 305, 360, 422, 496, 580, 680, 792, 922, 1068, 1238, 1432, 1656, 1908, 2196, 2520, 2892, 3312, 3792, 4330, 4940, 5624, 6400, 7272, 8258, 9361, 10602, 11988, 13548 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also number of partitions of n with no even multiples of 2 and no odd multiples of 3 (i.e. parts equal to 1 or 5 mod 6 and to 2 mod 4). Example: a(7)=8 because we have [7],[6,1],[5,2],[5,1,1],[2,2,2,1],[2,2,1,1,1],[2,1,1,1,1,1] and [1,1,1,1,1,1,1].

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

R. Zumkeller, Table of n, a(n) for n = 0..128 [From Reinhard Zumkeller, Sep 13 2009]

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of chi(-q^3) / (chi(-q) * chi(-q^2)) in powers of q where chi() is a Ramanujan theta function. - Michael Somos, Jun 08 2012

Expansion of eta(q^3) * eta(q^4) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jun 08 2012

Euler transform of period 12 sequence [ 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, ...]. - Michael Somos, Jun 08 2012

G.f.=product((1+x^(2j-1)+x^(4j-2))(1+x^(2j)), j=1..infinity). G.f.=product([(1-x^(6j-3))(1-x^(4j))]/[(1-x^(2j-1))(1-x^(2j))],j=1..infinity). G.f.=1/product((1-x^(1+6j))(1-x^(5+6j))(1-x^(2+4j)), j=0..infinity).

G.f.=product((1+x^j)*(1+x^(2j))/(1+x^(3j)), j=1..infinity). [From Vladeta Jovovic, Jul 24 2009]

EXAMPLE

a(7)=8 because we have [7],[6,1],[5,2],[5,1,1],[4,3],[4,2,1],[3,3,1] and [3,2,1,1].

1 + q + 2*q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 6*q^6 + 8*q^7 + 10*q^8 + 12*q^9 + ...

MAPLE

g:=product((1+x^(2*j-1)+x^(4*j-2))*(1+x^(2*j)), j=1..50): gser:=series(g, x=0, 65): seq(coeff(gser, x, n), n=0..60);

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^4 + A) / (eta(x + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 08 2012 */

CROSSREFS

Sequence in context: A005860 A114541 A077114 * A116902 A066447 A035542

Adjacent sequences:  A118243 A118244 A118245 * A118247 A118248 A118249

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Apr 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 23:03 EST 2014. Contains 252290 sequences.