login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118246 Number of partitions of n such that even parts occur at most once and odd parts occur at most twice. 1
1, 1, 2, 2, 3, 4, 6, 8, 10, 12, 16, 20, 26, 32, 40, 48, 59, 72, 88, 106, 128, 152, 182, 216, 258, 305, 360, 422, 496, 580, 680, 792, 922, 1068, 1238, 1432, 1656, 1908, 2196, 2520, 2892, 3312, 3792, 4330, 4940, 5624, 6400, 7272, 8258, 9361, 10602, 11988, 13548 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also number of partitions of n with no even multiples of 2 and no odd multiples of 3 (i.e. parts equal to 1 or 5 mod 6 and to 2 mod 4). Example: a(7)=8 because we have [7],[6,1],[5,2],[5,1,1],[2,2,2,1],[2,2,1,1,1],[2,1,1,1,1,1] and [1,1,1,1,1,1,1].

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

R. Zumkeller, Table of n, a(n) for n = 0..128 [From Reinhard Zumkeller, Sep 13 2009]

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of chi(-q^3) / (chi(-q) * chi(-q^2)) in powers of q where chi() is a Ramanujan theta function. - Michael Somos, Jun 08 2012

Expansion of eta(q^3) * eta(q^4) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jun 08 2012

Euler transform of period 12 sequence [ 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, ...]. - Michael Somos, Jun 08 2012

G.f.=product((1+x^(2j-1)+x^(4j-2))(1+x^(2j)), j=1..infinity). G.f.=product([(1-x^(6j-3))(1-x^(4j))]/[(1-x^(2j-1))(1-x^(2j))],j=1..infinity). G.f.=1/product((1-x^(1+6j))(1-x^(5+6j))(1-x^(2+4j)), j=0..infinity).

G.f.=product((1+x^j)*(1+x^(2j))/(1+x^(3j)), j=1..infinity). [From Vladeta Jovovic, Jul 24 2009]

EXAMPLE

a(7)=8 because we have [7],[6,1],[5,2],[5,1,1],[4,3],[4,2,1],[3,3,1] and [3,2,1,1].

1 + q + 2*q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 6*q^6 + 8*q^7 + 10*q^8 + 12*q^9 + ...

MAPLE

g:=product((1+x^(2*j-1)+x^(4*j-2))*(1+x^(2*j)), j=1..50): gser:=series(g, x=0, 65): seq(coeff(gser, x, n), n=0..60);

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^4 + A) / (eta(x + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 08 2012 */

CROSSREFS

Sequence in context: A005860 A114541 A077114 * A116902 A066447 A035542

Adjacent sequences:  A118243 A118244 A118245 * A118247 A118248 A118249

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Apr 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 31 14:42 EDT 2014. Contains 248868 sequences.