login
A116963
Inverse Moebius transform of the shifted tetrahedral numbers.
10
4, 14, 24, 49, 60, 118, 124, 214, 244, 356, 368, 608, 564, 814, 896, 1183, 1144, 1668, 1544, 2162, 2168, 2678, 2604, 3698, 3336, 4228, 4304, 5344, 4964, 6732, 5988, 7728, 7528, 8924, 8616, 11297, 9884, 12214, 12064, 14668, 13248, 17132, 15184, 18928, 18412, 21038
OFFSET
1,1
LINKS
FORMULA
a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)/6 = Sum_{d|n} A000292(d+1).
G.f.: Sum_{k>0} (1/(1-x^k)^4 - 1). - Seiichi Manyama, Jun 12 2023
EXAMPLE
a(12) = ((1+1)*(1+2)*(1+3)/6) + ((2+1)*(2+2)*(2+3)/6) + ((3+1)*(3+2)*(3+3)/6) + ((4+1)*(4+2)*(4+3)/6) + ((6+1)*(6+2)*(6+3)/6) + ((12+1)*(12+2)*(12+3)/6) = 4 + 10 + 20 + 35 + 84 + 455 = 608.
a(13) = ((1+1)*(1+2)*(1+3)/6) + ((13+1)*(13+2)*(13+3)/6) = 4 + 560 = 564.
MATHEMATICA
a[n_] := DivisorSum[n, Binomial[# + 3, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 05 2023 *)
PROG
(PARI) my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, 1/(1-x^k)^4-1)) \\ Seiichi Manyama, Jun 12 2023
CROSSREFS
See also: A007437 (inverse Moebius transform of triangular numbers).
Sequence in context: A277591 A017317 A195973 * A094930 A289665 A080286
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 31 2006
STATUS
approved