login
A116571
Coefficient expansion of wfunction based on prime genus weight function.
0
6, 6, 6, 6, 24, 24, 60, 60, 120, 60, 120, 210, 120, 210, 336, 336, 336, 504, 504, 720, 504, 720, 990, 1320, 1320, 1320, 1716, 1716, 1716, 2184, 2730, 2730, 3360, 2730, 4080, 3360, 4080, 4080, 4896, 5814, 6840, 5814, 6840, 7980, 6840, 9240, 9240, 10626
OFFSET
0,1
LINKS
Ken Ono and Scott Ahlgren, Weierstrass points on X0(p) and supersingular j-invariants, Mathematische Annalen 325, 2003, pp. 355-368.
MATHEMATICA
g[1] = 1; g[2] = 1;
g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0
g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0
g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0
g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0
p[x] := Sum[g[n]*(g[n]^2 - 1)*x^n, {n, 1, 200}]
Flatten[{{0}, Table[ Coefficient[Series[p[x], {x, 0, 70}], x^n], {n, 1, 70}]}]
CROSSREFS
Sequence in context: A285048 A265830 A346621 * A054641 A024731 A195504
KEYWORD
nonn,obsc,uned
AUTHOR
Roger L. Bagula, Mar 18 2006
STATUS
approved