

A116574


A Binet type formula from a polynomial whose coefficient expansion gives a tribonacci used as it first derivative InverseZtransform: A000073.


0



0, 1, 10, 1, 49, 225, 36, 730, 4097, 2025, 4761, 48401, 46225, 13456, 432965, 703922, 1, 3066002, 8185321, 1134225, 16974401, 78145601, 35545444, 67043345, 632572802
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

x^2/(1  x  x^2  x^3) is similar to the polynomial: (x/(x^3 + x^2 + x  1)) but not the same. As the last is machine derived, it is probably more correct than the one quoted presently in A000073.


LINKS

Table of n, a(n) for n=0..24.


FORMULA

(*Source : A000073*) g[x_] = x^2/(1  x  x^2  x^3); dg[x_] = D[g[x], {x, 1}]; w[n_] := InverseZTransform[dg[x], x, n] // ToRadicals; a(n) =Abs[w[n]]^2


MATHEMATICA

(*Source : A000073*) g[x_] = x^2/(1  x  x^2  x^3); dg[x_] = D[g[x], {x, 1}]; w[n_] := InverseZTransform[dg[x], x, n] // ToRadicals; Table[Abs[Floor[N[w[n]]]]^2, {n, 1, 25}]


CROSSREFS

Cf. A000073.
Sequence in context: A193634 A115097 A050313 * A049326 A146537 A050304
Adjacent sequences: A116571 A116572 A116573 * A116575 A116576 A116577


KEYWORD

nonn,uned,obsc


AUTHOR

Roger L. Bagula, Mar 19 2006


STATUS

approved



