login
Decimal expansion of asymptotic constant in Goebel's sequence A003504.
2

%I #14 Feb 17 2024 10:26:37

%S 1,0,4,7,8,3,1,4,4,7,5,7,6,4,1,1,2,2,9,5,5,9,9,0,9,4,6,2,7,4,3,1,3,7,

%T 5,5,4,5,9,0,5,8,7,6,1,2,8,6,0,2,3,3,0,9,6,9,5,1,0,4,0,6,4,8,5,3,5,3,

%U 6,0,5,9,0,4,9,7,2,6,2,3,1,7,9,7,5,1,3,0,9,7,9,0,0,0,7,0,9,9,4,7,9,5,1,1,3

%N Decimal expansion of asymptotic constant in Goebel's sequence A003504.

%H Hibiki Gima, Toshiki Matsusaka, Taichi Miyazaki, and Shunta Yara, <a href="https://arxiv.org/abs/2402.09064">On integrality and asymptotic behavior of the (k,l)-Göbel sequences</a>, arXiv:2402.09064 [math.NT], 2024. See p. 2.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoebelsSequence.html">Goebel's Sequence</a>

%e 1.04783144757641122955990946274313755459058761286023309695104064853536...

%o (PARI) {a(n)=local(t=log(2)/2); for(k=2, 14, t+= (log(1+(k-1)/exp(2^(k-1)*t))-log(k))/2^k); t=exp(t-suminf(k=15, log(k)/2^k)); floor(t*10^(n-1))%10} /* _Michael Somos_, Apr 02 2006 */

%Y Cf. A003504.

%K nonn,cons

%O 1,3

%A _Eric W. Weisstein_, Jan 27 2006