

A115056


a(n) = n*(n^21)*(3*n+2).


2



0, 0, 0, 48, 264, 840, 2040, 4200, 7728, 13104, 20880, 31680, 46200, 65208, 89544, 120120, 157920, 204000, 259488, 325584, 403560, 494760, 600600, 722568, 862224, 1021200, 1201200, 1404000, 1631448, 1885464, 2168040, 2481240, 2827200
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


REFERENCES

Number Theory, George E. Andrews 1971, Dover Publications New York, p 4.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (5,10,10,5,1).


FORMULA

From G. C. Greubel, Jul 17 2017: (Start)
a(n) = 5*a(n1)  10*a(n2) + 10*a(n3)  5*a(n4) + a(n5).
G.f.: 24*x^2*(x+2)/(1x)^5.
E.g.f.: (3*x^4 + 20*x^3 + 24*x^2)*exp(x). (End)


MATHEMATICA

Table[3*n^4 + 2*n^3  3*n^2  2*n, {n, 1, 50}] (* G. C. Greubel, Jul 17 2017 *)


PROG

(PARI) g(n) = for(x=0, n, y=x*(x^21)*(3*x+2); print1(y", "))
(Pari) x='x+O('x^50); concat([0, 0, 0], Vec(24*x^2*(x+2)/(1x)^5)) \\ G. C. Greubel, Jul 17 2017


CROSSREFS

Sequence in context: A235904 A275406 A205469 * A001337 A259993 A205747
Adjacent sequences: A115053 A115054 A115055 * A115057 A115058 A115059


KEYWORD

nonn


AUTHOR

Cino Hilliard, Feb 28 2006


STATUS

approved



