login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115056 a(n) = n*(n^2-1)*(3*n+2). 2
0, 0, 0, 48, 264, 840, 2040, 4200, 7728, 13104, 20880, 31680, 46200, 65208, 89544, 120120, 157920, 204000, 259488, 325584, 403560, 494760, 600600, 722568, 862224, 1021200, 1201200, 1404000, 1631448, 1885464, 2168040, 2481240, 2827200 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,4

REFERENCES

Number Theory, George E. Andrews 1971, Dover Publications New York, p 4.

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..5000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

From G. C. Greubel, Jul 17 2017: (Start)

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).

G.f.: 24*x^2*(x+2)/(1-x)^5.

E.g.f.: (3*x^4 + 20*x^3 + 24*x^2)*exp(x). (End)

MATHEMATICA

Table[3*n^4 + 2*n^3 - 3*n^2 - 2*n, {n, -1, 50}] (* G. C. Greubel, Jul 17 2017 *)

PROG

(PARI) g(n) = for(x=0, n, y=x*(x^2-1)*(3*x+2); print1(y", "))

(Pari) x='x+O('x^50); concat([0, 0, 0], Vec(24*x^2*(x+2)/(1-x)^5)) \\ G. C. Greubel, Jul 17 2017

CROSSREFS

Sequence in context: A235904 A275406 A205469 * A001337 A259993 A205747

Adjacent sequences:  A115053 A115054 A115055 * A115057 A115058 A115059

KEYWORD

nonn

AUTHOR

Cino Hilliard, Feb 28 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 00:54 EST 2019. Contains 329885 sequences. (Running on oeis4.)