This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115055 Lower level digraph derived from a voltage graph. 2
 0, 1, 0, 0, 1, 3, 3, 2, 6, 15, 21, 24, 42, 86, 138, 192, 305, 546, 906, 1381, 2175, 3651, 6042, 9582, 15225, 24901, 40836, 65748, 105364, 170796, 278184, 450017, 724968, 1172412, 1902321, 3080367, 4975551, 8044478, 13029534, 21096027, 34114553 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Lower level digraph derived from a voltage graph (Gross's covering graph construction) that is a generalized Fibonacci Markov. In matrix terms gives a 6 X 6 Markov with characteristic Polynomial (-1 - x + x^2)*(1 + 2*x + 2*x^2 + x^3 + x^4). This digraph construction gives a complex substructure to the Fibonacci Pisot that is not Pisot. Gross's covering graph constructions called voltage graphs are abstractions from lower level graphs. limit_{n to Infinity} (a(n+1)/a(n)) = Golden Mean. REFERENCES J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley, 1987; see Figure 2.5 p. 62 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,1,3,3,1). FORMULA Let M be the 6x6 matrix given by: M = {{0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 1, 0}}, then v(n) = M.v(n-1), where a(n) = v(n)(1). From Vladimir Kruchinin, Oct 12 2011: (Start) G.f.: x/(1-(x+x^2)^3). a(n) = Sum_{k=0..n} binomial(3*k,n-3*k). (End) a(n) = a(n-3) + 3*a(n-4) + 3*a(n-5) + a(n-6). - G. C. Greubel, Mar 22 2019 MATHEMATICA (* Gross page 62 voltage group L3 : weights set to one *) M = {{0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 1, 0}} v[1] = {0, 0, 0, 0, 0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] (* alternate program *) LinearRecurrence[{0, 0, 1, 3, 3, 1}, {0, 1, 0, 0, 1, 3}, 50] (* G. C. Greubel, Mar 22 2019 *) PROG (PARI) my(x='x+O('x^50)); concat([0], Vec(x/(1-(x+x^2)^3))) \\ G. C. Greubel, Mar 22 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x/(1-(x+x^2)^3) )); // G. C. Greubel, Mar 22 2019 (Sage) (x/(1-(x+x^2)^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 22 2019 (GAP) a:=[0, 1, 0, 0, 1, 3];; for n in [7..50] do a[n]:=a[n-3]+3*a[n-4]+ 3*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Mar 22 2019 CROSSREFS Sequence in context: A200174 A266153 A086636 * A158468 A238278 A200770 Adjacent sequences:  A115052 A115053 A115054 * A115056 A115057 A115058 KEYWORD nonn AUTHOR Roger L. Bagula, Dec 09 2006 EXTENSIONS Edited by G. C. Greubel, Mar 22 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 07:00 EST 2019. Contains 329948 sequences. (Running on oeis4.)