login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114856
Indices n of ("bad") Gram points g(n) for which (-1)^n Z(g(n)) < 0, where Z(t) is the Riemann-Siegel Z-function.
24
126, 134, 195, 211, 232, 254, 288, 367, 377, 379, 397, 400, 461, 507, 518, 529, 567, 578, 595, 618, 626, 637, 654, 668, 692, 694, 703, 715, 728, 766, 777, 793, 795, 807, 819, 848, 857, 869, 887, 964, 992, 995, 1016, 1028, 1034, 1043, 1046, 1071, 1086
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
E. C. Titchmarsh, On van der Corput's Method and the zeta-function of Riemann IV, Quarterly Journal of Mathematics os-5 (1934), pp. 98-105.
Timothy Trudgian, On the success and failure of Gram's Law and the Rosser Rule, Acta Arithmetica, 2011 | 148 | 3 | 225-256.
Eric Weisstein's World of Mathematics, Gram Point.
FORMULA
Trudgian shows that a(n) = O(n), that is, there exists some k such that a(n) <= k*n. - Charles R Greathouse IV, Aug 29 2012
In fact Trudgian shows that a(n) ≍ n, and further, there exist constants 1 < b < c such that b*n < a(n) < c*n. (See the paper's discussion of the Weak Gram Law.) - Charles R Greathouse IV, Mar 28 2023
EXAMPLE
(-1)^126 Z(g(126)) = -0.0276294988571999.... - David Baugh, Apr 02 2008
MATHEMATICA
g[n_] := (g0 /. FindRoot[ RiemannSiegelTheta[g0] == Pi*n, {g0, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}, WorkingPrecision -> 16]); Reap[For[n = 1, n < 1100, n++, If[(-1)^n*RiemannSiegelZ[g[n]] < 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 17 2012, after Eric W. Weisstein *)
PROG
(PARI) g0(n)=2*Pi*exp(1+lambertw((8*n+1)/exp(1)/8)) \\ approximate location of gram(n)
th(t)=arg(gamma(1/4+I*t/2))-log(Pi)*t/2 \\ theta, but off by some integer multiple of 2*Pi
thapprox(t)=log(t/2/Pi)*t/2-t/2-Pi/8+1/48/t-1/5760/t^3
RStheta(t)=my(T=th(t)); (thapprox(t)-T)\/(2*Pi)*2*Pi+T
gram(n)=my(G=g0(n), k=n*Pi); solve(x=G-.003, G+1e-8, RStheta(x)-k)
Z(t)=exp(th(t)*I)*zeta(1/2+I*t)
is(n)=my(G=gram(n)); real((-1)^n*Z(G))<0 \\ Charles R Greathouse IV, Jan 22 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jan 02 2006
EXTENSIONS
Definition corrected by David Baugh, Apr 02 2008
STATUS
approved