This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114856 Indices n of Gram points g(n) for which (-1)^n Z(g(n)) < 0, where Z(t) is the Riemann-Siegel Z-function. 13

%I

%S 126,134,195,211,232,254,288,367,377,379,397,400,461,507,518,529,567,

%T 578,595,618,626,637,654,668,692,694,703,715,728,766,777,793,795,807,

%U 819,848,857,869,887,964,992,995,1016,1028,1034,1043,1046,1071,1086

%N Indices n of Gram points g(n) for which (-1)^n Z(g(n)) < 0, where Z(t) is the Riemann-Siegel Z-function.

%H E. C. Titchmarsh, <a href="http://qjmath.oxfordjournals.org/content/os-5/1/98.extract">On van der Corput's Method and the zeta-function of Riemann IV</a>, Quarterly Journal of Mathematics os-5 (1934), pp. 98-105.

%H Timothy Trudgian, <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.402&amp;rep=rep1&amp;type=pdf">On the success and failure of Gram's Law and the Rosser Rule</a>, Acta Arithmetica, 2011 | 148 | 3 | 225-256.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GramPoint.html">Gram Point</a>

%F Trudgian shows that a(n) = O(n), that is, there exists some k such that a(n) <= kn. - _Charles R Greathouse IV_, Aug 29 2012

%e E.g. (-1)^126 Z(g(126)) = -0.0276294988571999... [_David Baugh_]

%t g[n_] := (g0 /. FindRoot[ RiemannSiegelTheta[g0] == Pi*n, {g0, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}, WorkingPrecision -> 16]); Reap[For[n = 1, n < 1100, n++, If[(-1)^n*RiemannSiegelZ[g[n]] < 0, Print[n]; Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Oct 17 2012, after _Eric W. Weisstein_ *)

%Y Cf. A114857, A114858, A216700.

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Jan 02 2006

%E Definition corrected by _David Baugh_, Apr 02 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.