%I
%S 126,134,195,211,232,254,288,367,377,379,397,400,461,507,518,529,567,
%T 578,595,618,626,637,654,668,692,694,703,715,728,766,777,793,795,807,
%U 819,848,857,869,887,964,992,995,1016,1028,1034,1043,1046,1071,1086
%N Indices n of Gram points g(n) for which (1)^n Z(g(n)) < 0, where Z(t) is the RiemannSiegel Zfunction.
%D E. C. Titchmarsh, On van der Corput's Method and the zetafunction of Riemann IV, Quarterly Journal of Mathematics os5 (1934), pp. 98105.
%H Timothy Trudgian, <a href="http://www.cs.uleth.ca/~trudgian/TrudgianActaArithmeticaGram.pdf">On the success and failure of Gram's Law and the Rosser Rule</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GramPoint.html">Gram Point</a>
%F Trudgian shows that a(n) = O(n), that is, there exists some k such that a(n) <= kn.  _Charles R Greathouse IV_, Aug 29 2012
%e E.g. (1)^126 Z(g(126)) = 0.0276294988571999... [David Baugh]
%t g[n_] := (g0 /. FindRoot[ RiemannSiegelTheta[g0] == Pi*n, {g0, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}, WorkingPrecision > 16]); Reap[For[n = 1, n < 1100, n++, If[(1)^n*RiemannSiegelZ[g[n]] < 0, Print[n]; Sow[n]]]][[2, 1]] (* _JeanFrançois Alcover_, Oct 17 2012, after _Eric W. Weisstein_ *)
%Y Cf. A114857, A114858, A216700.
%K nonn
%O 1,1
%A _Eric W. Weisstein_, Jan 02 2006
%E Definition corrected by David Baugh, Apr 02 2008
