

A114161


E.g.f.: (3log(12*x))/(12*x)^(1/2).


2



3, 5, 17, 91, 667, 6213, 70233, 933819, 14277555, 246772485, 4757596065, 101218975515, 2355535057995, 59520844736325, 1622874515042025, 47490277029572475, 1484579154624005475, 49374909670517201925
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


REFERENCES

C. Dement, Floretion Integer Sequences (work in progress)


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..400


FORMULA

a(n) = 2^n*GAMMA(n+1/2)/Pi^(1/2)*(3+Psi(n+1/2) + gamma + 2*log(2)).  Vladeta Jovovic


MATHEMATICA

Range[0, 17]!CoefficientList[ Series[(3  Log[1  2x])/Sqrt[(1  2x)], {x, 0, 17}], x] (* or *)
f[n_] := FullSimplify[ 2^n*Gamma[n + 1/2]/Sqrt[Pi]*(3 + PolyGamma[n + 1/2] + EulerGamma + 2Log[2])]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v *)


PROG

(PARI) { my(x = xx + O(xx^30)); Vec(serlaplace((3log(12*x))/(12*x)^(1/2))) } \\ Michel Marcus, Jul 06 2015


CROSSREFS

Cf. A114160.
Sequence in context: A102846 A100003 A283331 * A302199 A346791 A174722
Adjacent sequences: A114158 A114159 A114160 * A114162 A114163 A114164


KEYWORD

nonn


AUTHOR

Creighton Dement, Nov 14 2005


EXTENSIONS

E.g.f. from Vladeta Jovovic
More terms from Robert G. Wilson v, Nov 15 2005


STATUS

approved



