login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114160
E.g.f. is A(x) = (1-log(B(x)))/B(x), where B(x) = sqrt(1-2*x).
3
1, 2, 7, 38, 281, 2634, 29919, 399342, 6125265, 106156530, 2051433495, 43734832470, 1019650457385, 25807495577850, 704708234182575, 20649996837971550, 646340185330747425, 21521124899877175650, 759572031366463998375, 28325808256035867711750, 1112907316518036732317625
OFFSET
0,2
COMMENTS
From John M. Campbell, May 20 2011: (Start)
a(n) is the determinant of the n X n matrix of the form:
|2 1 1 1 ... 1 |
|1 4 1 1 ... 1 |
|1 1 6 1 ... 1 |
|1 1 1 8 ... 1 |
|... ... 1 |
|1 1 1 1 2n-2 1 |
|1 1 1 1 1 2n |
See examples. (End)
REFERENCES
C. Dement, Floretion Integer Sequences (work in progress)
LINKS
FORMULA
a(n) = A001147(n) + A004041(n-1) = 2^n*GAMMA(n+1/2)/Pi^(1/2)*(1/2*Psi(n+1/2)+1/2*gamma+log(2)+1. - Vladeta Jovovic
EXAMPLE
From John M. Campbell, May 20 2011: (Start)
Det[{
{2,1,1,1,1,1},
{1,4,1,1,1,1},
{1,1,6,1,1,1},
{1,1,1,8,1,1},
{1,1,1,1,10,1},
{1,1,1,1,1,12}}] = 29919 = a(6), and
Det[{
{2,1,1,1,1,1,1},
{1,4,1,1,1,1,1},
{1,1,6,1,1,1,1},
{1,1,1,8,1,1,1},
{1,1,1,1,10,1,1},
{1,1,1,1,1,12,1},
{1,1,1,1,1,1,14}}] = 399342 = a(7).
(End)
MATHEMATICA
Range[0, 18]! CoefficientList[ Series[(1 - Log[Sqrt[1 - 2x]])/Sqrt[(1 - 2x)], {x, 0, 18}], x] (* or *)
f[n_] := FullSimplify[ 2^(n-1)*Gamma[n + 1/2]/Sqrt[Pi]*(PolyGamma[n + 1/2] + EulerGamma + Log[4] + 2)]; Table[f[n], {n, 0, 18}] (* Robert G. Wilson v *)
twox[x_, y_] := If[x == y, 2*x, 1]; a[n_] := Det[Array[twox[#1, #2] &, {n, n}]]; Join[{1}, Table[a[n], {n, 1, 10}]] (* John M. Campbell, May 20 2011 *)
PROG
(PARI) x='x + O('x^50); Vec(serlaplace((1 - log(sqrt(1 - 2*x)))/sqrt(1 - 2*x))) \\ G. C. Greubel, Feb 08 2017
CROSSREFS
Cf. A114161.
Sequence in context: A368232 A337026 A088792 * A145159 A317985 A084552
KEYWORD
nonn
AUTHOR
Creighton Dement, Nov 14 2005
EXTENSIONS
E.g.f. given by Vladeta Jovovic
More terms from Robert G. Wilson v, Nov 15 2005
STATUS
approved