login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114160 E.g.f. is A(x) = (1-log(B(x)))/B(x), where B(x) = sqrt(1-2*x). 3
1, 2, 7, 38, 281, 2634, 29919, 399342, 6125265, 106156530, 2051433495, 43734832470, 1019650457385, 25807495577850, 704708234182575, 20649996837971550, 646340185330747425, 21521124899877175650, 759572031366463998375, 28325808256035867711750, 1112907316518036732317625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

From John M. Campbell, May 20 2011: (Start)

a(n) is the determinant of the n X n matrix of the form:

|2 1 1 1  ...   1  |

|1 4 1 1  ...   1  |

|1 1 6 1  ...   1  |

|1 1 1 8  ...   1  |

|...    ...     1  |

|1 1 1 1  2n-2  1  |

|1 1 1 1   1    2n |

See examples. (End)

REFERENCES

C. Dement, Floretion Integer Sequences (work in progress)

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..400

FORMULA

a(n) = A001147(n) + A004041(n-1) = 2^n*GAMMA(n+1/2)/Pi^(1/2)*(1/2*Psi(n+1/2)+1/2*gamma+log(2)+1. - Vladeta Jovovic

EXAMPLE

From John M. Campbell, May 20 2011: (Start)

Det[{

{2,1,1,1,1,1},

{1,4,1,1,1,1},

{1,1,6,1,1,1},

{1,1,1,8,1,1},

{1,1,1,1,10,1},

{1,1,1,1,1,12}}] = 29919 = a(6), and

Det[{

{2,1,1,1,1,1,1},

{1,4,1,1,1,1,1},

{1,1,6,1,1,1,1},

{1,1,1,8,1,1,1},

{1,1,1,1,10,1,1},

{1,1,1,1,1,12,1},

{1,1,1,1,1,1,14}}] = 399342 = a(7).

(End)

MATHEMATICA

Range[0, 18]! CoefficientList[ Series[(1 - Log[Sqrt[1 - 2x]])/Sqrt[(1 - 2x)], {x, 0, 18}], x] (* or *)

f[n_] := FullSimplify[ 2^(n-1)*Gamma[n + 1/2]/Sqrt[Pi]*(PolyGamma[n + 1/2] + EulerGamma + Log[4] + 2)]; Table[f[n], {n, 0, 18}] (* Robert G. Wilson v *)

twox[x_, y_] := If[x == y, 2*x, 1]; a[n_] := Det[Array[twox[#1, #2] &, {n, n}]]; Join[{1}, Table[a[n], {n, 1, 10}]] (* John M. Campbell, May 20 2011 *)

PROG

(PARI) x='x + O('x^50); Vec(serlaplace((1 - log(sqrt(1 - 2*x)))/sqrt(1 - 2*x))) \\ G. C. Greubel, Feb 08 2017

CROSSREFS

Cf. A114161.

Sequence in context: A032109 A337026 A088792 * A145159 A317985 A084552

Adjacent sequences:  A114157 A114158 A114159 * A114161 A114162 A114163

KEYWORD

nonn

AUTHOR

Creighton Dement, Nov 14 2005

EXTENSIONS

E.g.f. given by Vladeta Jovovic

More terms from Robert G. Wilson v, Nov 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 06:11 EST 2020. Contains 338781 sequences. (Running on oeis4.)