login
A113365
Matrix cube of triangle A113350.
3
1, 6, 1, 39, 12, 1, 327, 138, 18, 1, 3556, 1830, 297, 24, 1, 48659, 28805, 5349, 516, 30, 1, 812462, 535004, 109095, 11724, 795, 36, 1, 16136404, 11568197, 2529909, 292894, 21795, 1134, 42, 1, 373415239, 287143993, 66345668, 8117624, 643790, 36402, 1533
OFFSET
0,2
FORMULA
Column k of A113350^3 = column 1 of A113340^(2*k+2) for k>=0.
EXAMPLE
Triangle begins:
1;
6,1;
39,12,1;
327,138,18,1;
3556,1830,297,24,1;
48659,28805,5349,516,30,1;
812462,535004,109095,11724,795,36,1;
16136404,11568197,2529909,292894,21795,1134,42,1;
373415239,287143993,66345668,8117624,643790,36402,1533,48,1; ...
PROG
(PARI) T(n, k)=local(A, B); A=matrix(1, 1); A[1, 1]=1; for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, B[i, j]=1, if(j==1, B[i, 1]=1, B[i, j]=(A^(2*j-1))[i-j+1, 1])); )); A=B); (matrix(#A, #A, r, c, if(r>=c, (A^(2*c))[r-c+1, 1]))^3)[n+1, k+1]
CROSSREFS
Cf. A113340, A113350, A113346 (column 0), A113366 (column 1), A113367 (column 2); A113355 (=A113350^2), A113360 (=A113340^3).
Sequence in context: A075501 A089504 A145927 * A293172 A145356 A145357
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 09 2005
STATUS
approved