login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113340 Triangle P, read by rows, such that P^2 transforms column k of P into column k+1 of P, so that column k of P equals column 0 of P^(2*k+1), where P^2 denotes the matrix square of P. 32
1, 1, 1, 1, 3, 1, 1, 12, 5, 1, 1, 69, 35, 7, 1, 1, 560, 325, 70, 9, 1, 1, 6059, 3880, 889, 117, 11, 1, 1, 83215, 57560, 13853, 1881, 176, 13, 1, 1, 1399161, 1030751, 258146, 36051, 3421, 247, 15, 1, 1, 28020221, 21763632, 5633264, 805875, 77726, 5629, 330, 17, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..54.

FORMULA

Let [P^m]_k denote column k of matrix power P^m,

so that triangular matrix P may be defined by

[P]_k = [P^(2*k+1)]_0, for k>=0.

Define the dual triangular matrix Q = A113350 by

[Q]_k = [P^(2*k+2)]_0, for k>=0.

Then, amazingly, powers of P and Q satisfy:

[P^(2*j+1)]_k = [P^(2*k+1)]_j,

[P^(2*j+2)]_k = [Q^(2*k+1)]_j,

[Q^(2*j+2)]_k = [Q^(2*k+2)]_j,

for all j>=0, k>=0.

Also, we have the column transformations:

P^2 * [P]_k = [P]_{k+1},

P^2 * [Q]_k = [Q]_{k+1},

Q^2 * [P^2]_k = [P^2]_{k+1},

Q^2 * [Q^2]_k = [Q^2]_{k+1},

for all k>=0.

Further, g.f.s of P and Q satisfy:

GF(P) = 1/(1-x) + x*y*GF(Q^2*P^-1),

GF(Q^-1*P^2) = 1 + x*y*GF(Q).

EXAMPLE

Triangle P begins:

1;

1,1;

1,3,1;

1,12,5,1;

1,69,35,7,1;

1,560,325,70,9,1;

1,6059,3880,889,117,11,1;

1,83215,57560,13853,1881,176,13,1;

1,1399161,1030751,258146,36051,3421,247,15,1;

1,28020221,21763632,5633264,805875,77726,5629,330,17,1;

1,654110586,531604250,141487178,20661609,2023461,147810,8625,425,19,1;

Matrix square P^2 (A113345) starts:

1;

2,1;

5,6,1;

19,39,10,1;

113,327,105,14,1;

966,3556,1315,203,18,1; ...

where P^2 transforms column k of P into column k+1 of P:

at k=0, [P^2]*[1,1,1,1,1,...] = [1,3,12,69,560,...];

at k=1, [P^2]*[1,3,12,69,560,...] = [1,5,35,325,3880,...].

PROG

(PARI) {P(n, k)=local(A, B); A=matrix(1, 1); A[1, 1]=1; for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3|j==i|j>m-1, B[i, j]=1, if(j==1, B[i, 1]=1, B[i, j]=(A^(2*j-1))[i-j+1, 1])); )); A=B); A[n+1, k+1]}

CROSSREFS

Cf. A113341 (column 1), A113342 (column 2), A113343 (column 3), A113344 (column 4); A113345 (P^2), A113360 (P^3), A113350 (Q).

Sequence in context: A111473 A234944 A067402 * A267849 A134523 A098778

Adjacent sequences:  A113337 A113338 A113339 * A113341 A113342 A113343

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Nov 08 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 06:30 EST 2016. Contains 278749 sequences.