The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078122 Infinite lower triangular matrix, M, that satisfies [M^3](i,j) = M(i+1,j+1) for all i,j>=0 where [M^n](i,j) denotes the element at row i, column j, of the n-th power of matrix M, with M(0,k)=1 and M(k,k)=1 for all k>=0. 19
 1, 1, 1, 1, 3, 1, 1, 12, 9, 1, 1, 93, 117, 27, 1, 1, 1632, 3033, 1080, 81, 1, 1, 68457, 177507, 86373, 9801, 243, 1, 1, 7112055, 24975171, 15562314, 2371761, 88452, 729, 1, 1, 1879090014, 8786827629, 6734916423, 1291958181, 64392813, 796797, 2187, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS M also satisfies: [M^(3k)](i,j) = [M^k](i+1,j+1) for all i,j,k >=0; thus [M^(3^n)](i,j) = M(i+n,j+n) for all n >= 0. Conjecture: the sum of the n-th row equals the number of partitions of 3^n into powers of 3 (A078125). LINKS Alois P. Heinz, Rows n = 0..60, flattened FORMULA M(1, j) = A078124(j), M(j+1, j)=3^j, M(j+2, j) = A016142(j). M(n, k) = the coefficient of x^(3^n - 3^(n-k)) in the power series expansion of 1/Product_{j=0..n-k}(1-x^(3^j)) whenever 0<=k0 (conjecture). EXAMPLE The cube of the matrix is the same matrix excluding the first row and column: [1,_0,_0,0]^3=[_1,__0,_0,_0] [1,_1,_0,0]___[_3,__1,_0,_0] [1,_3,_1,0]___[12,__9,_1,_0] [1,12,_9,1]___[93,117,27,_1] MAPLE S:= proc(i, j) option remember;        add(M(i, k)*M(k, j), k=0..i)     end: M:= proc(i, j) option remember; `if`(j=0 or i=j, 1,        add(S(i-1, k)*M(k, j-1), k=0..i-1))     end: seq(seq(M(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Feb 27 2015 MATHEMATICA m[i_, j_] := m[i, j]=If[j==0||i==j, 1, m3[i-1, j-1]]; m2[i_, j_] := m2[i, j]=Sum[m[i, k]m[k, j], {k, j, i}]; m3[i_, j_] := m3[i, j]=Sum[m[i, k]m2[k, j], {k, j, i}]; Flatten[Table[m[i, j], {i, 0, 8}, {j, 0, i}]] CROSSREFS Cf. A078121, A078123, A078124, A078125, A016142. Sequence in context: A113340 A134523 A098778 * A128592 A156584 A209424 Adjacent sequences:  A078119 A078120 A078121 * A078123 A078124 A078125 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Nov 18 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 06:02 EDT 2021. Contains 342935 sequences. (Running on oeis4.)