login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113300
Sum of even-indexed terms of tribonacci numbers.
7
0, 1, 3, 10, 34, 115, 389, 1316, 4452, 15061, 50951, 172366, 583110, 1972647, 6673417, 22576008, 76374088, 258371689, 874065163, 2956941266, 10003260650, 33840788379, 114482567053, 387291750188, 1310198605996, 4432370135229, 14994600761871, 50726371026838
OFFSET
0,3
COMMENTS
A000073 is the tribonacci numbers. A099463 is the bisection of the tribonacci numbers.
Primes in this sequence include a(2) = 3, a(6) = 389, a(9) = 15061, a(10) = 50951. a(n) in this sequence is semiprime for n = 3, 4, 5, 11, 14, ...
Partial sums of A099463. a(n+1) gives row sums of Riordan array (1/(1-x)^2,(1+x)^2/(1-x)^2)). Congruent to 0,1,1,0,0,1,1,0,0,... modulo 2. - Paul Barry, Feb 07 2006
FORMULA
a(n) = Sum_{i=0..n} A000073(2*n).
a(n) = Sum_{i=0..n} A099463(n).
a(n) + A113301(n) = A008937(n).
From Paul Barry, Feb 07 2006: (Start)
G.f.: x/(1 - 3*x - x^2 - x^3).
a(n) = 3*a(n-1) + a(n-2) + a(n-3). (End)
MATHEMATICA
Accumulate[Take[LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 60], {1, -1, 2}]] (* Harvey P. Dale, Nov 06 2011 *)
LinearRecurrence[{3, 1, 1}, {0, 1, 3}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
a[ n_] := Sum[ SeriesCoefficient[ SeriesCoefficient[ x / (1 - x - y - x y) , {x, 0, n - k}]^2 , {y, 0, k}], {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
PROG
(Magma) I:=[0, 1, 3]; [n le 3 select I[n] else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..61]]; // G. C. Greubel, Nov 19 2021
(Sage)
@CachedFunction
def T(n): # T(n) = A000073(n)
if (n<2): return 0
elif (n==2): return 1
else: return T(n-1) +T(n-2) +T(n-3)
def a(n): return sum( T(2*j) for j in (0..n) )
[a(n) for n in (0..60)] # G. C. Greubel, Nov 19 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 24 2005
STATUS
approved