login
Decimal expansion of log_3(8).
4

%I #16 Aug 06 2020 14:19:19

%S 1,8,9,2,7,8,9,2,6,0,7,1,4,3,7,2,3,1,1,2,9,8,5,8,1,3,4,3,0,2,8,2,8,2,

%T 5,6,2,8,9,8,7,5,6,9,2,0,3,9,5,6,4,1,2,8,3,6,1,1,9,6,4,8,3,1,5,1,6,0,

%U 5,5,6,0,4,1,4,2,7,4,4,4,1,5,1,8,3,5,1,8,0,6,5,6,4,8,3,5,5,2,3,6,6,8

%N Decimal expansion of log_3(8).

%C Hausdorff dimension of Cantor gasket or equally of two-dimensional Cantor dust.

%C Also capacity dimension of the SierpiƄski carpet.

%D Manfred Schroeder, Fractals, Chaos, Power Laws, Freeman, 1991, p. 179.

%H Vincenzo Librandi, <a href="/A113210/b113210.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiCarpet.html">Sierpinski Carpet</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%e 1.8927892607143723112985813430282825628987569203956412836119...

%t RealDigits[Log[3, 8], 10, 102][[1]] (* _Vincenzo Librandi_, Aug 29 2013 *)

%o (PARI) log(8)/log(3) \\ _Charles R Greathouse IV_, Aug 06 2020

%K nonn,cons,easy

%O 1,2

%A _Eric W. Weisstein_, Oct 17 2005

%E Edited by _N. J. A. Sloane_, Oct 28 2009