

A113210


Decimal expansion of log_3(8).


4



1, 8, 9, 2, 7, 8, 9, 2, 6, 0, 7, 1, 4, 3, 7, 2, 3, 1, 1, 2, 9, 8, 5, 8, 1, 3, 4, 3, 0, 2, 8, 2, 8, 2, 5, 6, 2, 8, 9, 8, 7, 5, 6, 9, 2, 0, 3, 9, 5, 6, 4, 1, 2, 8, 3, 6, 1, 1, 9, 6, 4, 8, 3, 1, 5, 1, 6, 0, 5, 5, 6, 0, 4, 1, 4, 2, 7, 4, 4, 4, 1, 5, 1, 8, 3, 5, 1, 8, 0, 6, 5, 6, 4, 8, 3, 5, 5, 2, 3, 6, 6, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Hausdorff dimension of Cantor gasket or equally of twodimensional Cantor dust.
Also capacity dimension of the Sierpinski carpet.


REFERENCES

Manfred Schroeder, Fractals, Chaos, Power Laws, Freeman,1991, p. 179.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Sierpinski Carpet


EXAMPLE

1.8927892607143723112985813430282825628987569203956412836119...


MATHEMATICA

RealDigits[Log[3, 8], 10, 102][[1]] (* Vincenzo Librandi, Aug 29 2013 *)


CROSSREFS

Sequence in context: A010767 A064734 A090929 * A021116 A201406 A242972
Adjacent sequences: A113207 A113208 A113209 * A113211 A113212 A113213


KEYWORD

nonn,cons,easy


AUTHOR

Eric W. Weisstein, Oct 17, 2005


EXTENSIONS

Edited by N. J. A. Sloane, Oct 28 2009


STATUS

approved



