|
|
A113210
|
|
Decimal expansion of log_3(8).
|
|
4
|
|
|
1, 8, 9, 2, 7, 8, 9, 2, 6, 0, 7, 1, 4, 3, 7, 2, 3, 1, 1, 2, 9, 8, 5, 8, 1, 3, 4, 3, 0, 2, 8, 2, 8, 2, 5, 6, 2, 8, 9, 8, 7, 5, 6, 9, 2, 0, 3, 9, 5, 6, 4, 1, 2, 8, 3, 6, 1, 1, 9, 6, 4, 8, 3, 1, 5, 1, 6, 0, 5, 5, 6, 0, 4, 1, 4, 2, 7, 4, 4, 4, 1, 5, 1, 8, 3, 5, 1, 8, 0, 6, 5, 6, 4, 8, 3, 5, 5, 2, 3, 6, 6, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Hausdorff dimension of Cantor gasket or equally of two-dimensional Cantor dust.
Also capacity dimension of the Sierpiński carpet.
|
|
REFERENCES
|
Manfred Schroeder, Fractals, Chaos, Power Laws, Freeman, 1991, p. 179.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Sierpinski Carpet
Index entries for transcendental numbers
|
|
EXAMPLE
|
1.8927892607143723112985813430282825628987569203956412836119...
|
|
MATHEMATICA
|
RealDigits[Log[3, 8], 10, 102][[1]] (* Vincenzo Librandi, Aug 29 2013 *)
|
|
PROG
|
(PARI) log(8)/log(3) \\ Charles R Greathouse IV, Aug 06 2020
|
|
CROSSREFS
|
Sequence in context: A289252 A064734 A090929 * A021116 A201406 A242972
Adjacent sequences: A113207 A113208 A113209 * A113211 A113212 A113213
|
|
KEYWORD
|
nonn,cons,easy
|
|
AUTHOR
|
Eric W. Weisstein, Oct 17 2005
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Oct 28 2009
|
|
STATUS
|
approved
|
|
|
|