login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112533 Expansion of (4+49*x+108*x^2-432*x^3+54675*x^5)/((1-27*x^2)*(1-6*x+27*x^2)*(1+6*x+27*x^2)). 1
4, 49, 144, 9, 324, 42849, 46656, 1347921, 3175524, 1896129, 23619600, 532917225, 359254116, 30866624721, 59997563136, 185622243921, 917583904836, 4659420127761, 750046066704, 604376350260489, 964709560931076 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

A floretion-generated sequence of squares.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,9,0,-243,0,19683).

FORMULA

a(n) = 9*a(n-2) - 243*a(n-4) + 19683*a(n-6) for n>5. - Colin Barker, May 06 2019

a(n) = (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*ChebyshevU(n-1, 3/p) ), where p = sqrt(27). - G. C. Greubel, Jan 12 2022

MATHEMATICA

a[n_]:= With[{p=Sqrt[27]}, Simplify[(p^n/12)*(9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU[n, 3/p] -(153-261*(-1)^n)/p*ChebyshevU[n-1, 3/p] )]];

Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 12 2022 *)

PROG

(PARI) Vec((4 + 49*x + 108*x^2 - 432*x^3 + 54675*x^5) / ((1 - 6*x + 27*x^2)*(1 - 27*x^2)*(1 + 6*x + 27*x^2)) + O(x^20)) \\ Colin Barker, May 06 2019

(Magma) I:=[4, 49, 144, 9, 324, 42849]; [n le 6 select I[n] else 9*(Self(n-2) - 27*Self(n-4) +2187*Self(n-6)): n in [1..31]]; // G. C. Greubel, Jan 12 2022

(Sage)

U=chebyshev_U

p=sqrt(27)

def A112533(n): return (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*U(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*U(n-1, 3/p) )

[A112533(n) for n in (0..30)] (* G. C. Greubel, Jan 12 2022 *)

CROSSREFS

Cf. A112534, A112535, A112536, A112537, A112538.

Sequence in context: A222960 A061100 A147803 * A016874 A092866 A340662

Adjacent sequences:  A112530 A112531 A112532 * A112534 A112535 A112536

KEYWORD

nonn,easy

AUTHOR

Creighton Dement, Sep 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 20:57 EDT 2022. Contains 357050 sequences. (Running on oeis4.)