login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112533
Expansion of (4+49*x+108*x^2-432*x^3+54675*x^5)/((1-27*x^2)*(1-6*x+27*x^2)*(1+6*x+27*x^2)).
1
4, 49, 144, 9, 324, 42849, 46656, 1347921, 3175524, 1896129, 23619600, 532917225, 359254116, 30866624721, 59997563136, 185622243921, 917583904836, 4659420127761, 750046066704, 604376350260489, 964709560931076
OFFSET
0,1
COMMENTS
A floretion-generated sequence of squares.
FORMULA
a(n) = 9*a(n-2) - 243*a(n-4) + 19683*a(n-6) for n>5. - Colin Barker, May 06 2019
a(n) = (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*ChebyshevU(n-1, 3/p) ), where p = sqrt(27). - G. C. Greubel, Jan 12 2022
MATHEMATICA
a[n_]:= With[{p=Sqrt[27]}, Simplify[(p^n/12)*(9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU[n, 3/p] -(153-261*(-1)^n)/p*ChebyshevU[n-1, 3/p] )]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 12 2022 *)
PROG
(PARI) Vec((4 + 49*x + 108*x^2 - 432*x^3 + 54675*x^5) / ((1 - 6*x + 27*x^2)*(1 - 27*x^2)*(1 + 6*x + 27*x^2)) + O(x^20)) \\ Colin Barker, May 06 2019
(Magma) I:=[4, 49, 144, 9, 324, 42849]; [n le 6 select I[n] else 9*(Self(n-2) - 27*Self(n-4) +2187*Self(n-6)): n in [1..31]]; // G. C. Greubel, Jan 12 2022
(Sage)
U=chebyshev_U
p=sqrt(27)
def A112533(n): return (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*U(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*U(n-1, 3/p) )
[A112533(n) for n in (0..30)] # G. C. Greubel, Jan 12 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Sep 11 2005
STATUS
approved