The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112280 Coefficients, read modulo 9, of the cube of q-series (q;q)_oo. 3
 1, 6, 0, 5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The cube-root of g.f. A(x) is an integer series (A112281). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA G.f.: A(x) = Sum_{n>=0} A112282(n) * x^(n*(n+1)/2) where A112282(n) = (-1)^n*(2*n+1) (mod 9). EXAMPLE A(x) = 1 + 6*x + 5*x^3 + 2*x^6 + 0*x^10 + 7*x^15 + 4*x^21 +... = (1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 - 11*x^15 +...) (mod 9). A(x)^(1/3) = 1 + 2*x - 4*x^2 + 15*x^3 - 60*x^4 + 268*x^5 -+... Notation: q-series (q;q)_oo = Product_{n>=1} (1-q^n) = 1 + Sum_{n>=1} (-1)^n*[q^(n*(3*n-1)/2) + q^(n*(3*n+1)/2)]. MAPLE seq(coeff(series( add(`mod`((-1)^n*(2*n+1), 9)*x^(n*(n+1)/2), n = 0 .. 140), x, n+1), x, n), n = 0 .. 120); # G. C. Greubel, Nov 05 2019 MATHEMATICA CoefficientList[Series[ Sum[Mod[(-1)^n*(2*n+1), 9]* x^(n(n+1)/2), {n, 0, 140}] , {x, 0, 120}], x] (* G. C. Greubel, Nov 05 2019 *) PROG (PARI) {a(n)=polcoeff(sum(k=0, sqrtint(2*n+1), (((-1)^k*(2*k+1))%9)*x^(k*(k+1)/2)+x*O(x^n)), n)} (MAGMA) R:=PowerSeriesRing(Integers(), 120); Coefficients(R!( (&+[((-1)^n*(2*n+1) mod 9)*x^Binomial(n+1, 2): n in [0..140]]) )); // G. C. Greubel, Nov 05 2019 (Sage) [ (sum(((-1)^n*(2*n+1)%9) *x^(n*(n+1)/2) for n in (0..140)) ).series(x, n+1).list()[n] for n in (0..120)]  # G. C. Greubel, Nov 05 2019 CROSSREFS Cf. A112281 (A(x)^(1/3)), A112282 (nonzero terms), A111983 (variant). Sequence in context: A196623 A265275 A113024 * A204850 A202394 A202954 Adjacent sequences:  A112277 A112278 A112279 * A112281 A112282 A112283 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 22:57 EDT 2020. Contains 336473 sequences. (Running on oeis4.)