This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204850 Expansion of f(x)^3 - 9 * x * f(x^9)^3 in powers of x where f() is a Ramanujan theta function. 3
 1, -6, 0, -5, 0, 0, -7, 0, 0, 0, -18, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, -13, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of f(x^3) * a(-x) in powers of x where f() is a Ramanujan theta function and a() is a cubic AGM theta function. a(n) = b(8*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = - (1 + (-1)^e) * 3^(e/2), b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 5, 7 (mod 8). - Michael Somos, Jun 19 2015 G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = -576 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133079. a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = a(9*n + 4) = a(9*n + 7) = 0. a(3*n) = A133079(n). a(9*n + 1) = -6 * A133089(n). a(25*n + 3) = -5 * a(n). a(n) = (-1)^n * A202394(n). EXAMPLE G.f. = 1 - 6*x - 5*x^3 - 7*x^6 - 18*x^10 + 11*x^15 - 13*x^21 + 30*x^28 + ... G.f. = q - 6*q^9 - 5*q^25 - 7*q^49 - 18*q^81 + 11*q^121 - 13*q^169 + ... MATHEMATICA a[ n_] := With[ {m = Sqrt[8 n + 1]}, If[ IntegerQ@m, m (-1)^(n + Quotient[m, 6]), 0] If[ Divisible[ m, 3], 2, 1]]; (* Michael Somos, Jun 19 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^3 - 9 x QPochhammer[ -x^9]^3, {x, 0, n}]; (* Michael Somos, Jun 19 2015 *) PROG (PARI) {a(n) = my(m); if( issquare(8*n + 1, &m), (-1)^(m \ 6 + n) * m * ((m%3 == 0) + 1), 0)}; (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(-x + A)^3 - 9 * x * eta(-x^9 + A)^3, n))}; CROSSREFS Cf. A133079, A133089, A202394. Sequence in context: A265275 A113024 A112280 * A202394 A202954 A218850 Adjacent sequences:  A204847 A204848 A204849 * A204851 A204852 A204853 KEYWORD sign AUTHOR Michael Somos, Jan 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.