OFFSET
0,4
COMMENTS
Column k equals 4^k multiplied by column 0 (A111819) when ignoring zeros above the diagonal.
FORMULA
T(n, k) = 4^k*T(n-k, 0) = A111819(n-k) for n>=k>=0.
EXAMPLE
Matrix log of A078536, with factorial denominators, begins:
0;
1/1!, 0;
-2/2!, 4/1!, 0;
2/3!, -8/2!, 16/1!, 0;
840/4!, 8/3!, -32/2!, 64/1!, 0;
-76056/5!, 3360/4!, 32/3!, -128/2!, 256/1!, 0;
-158761104/6!, -304224/5!, 13440/4!, 128/3!, -512/2!, 1024/1!, 0;
PROG
(PARI) T(n, k, q=4)=local(A=Mat(1), B); if(n<k || k<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); B=sum(i=1, #A, -(A^0-A)^i/i); return((n-k)!*B[n+1, k+1]))
CROSSREFS
KEYWORD
AUTHOR
Gottfried Helms and Paul D. Hanna, Aug 22 2005
STATUS
approved