login
A111297
First differences of A109975.
12
1, 2, 5, 11, 24, 52, 112, 240, 512, 1088, 2304, 4864, 10240, 21504, 45056, 94208, 196608, 409600, 851968, 1769472, 3670016, 7602176, 15728640, 32505856, 67108864, 138412032, 285212672, 587202560, 1207959552, 2483027968, 5100273664
OFFSET
0,2
LINKS
Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
FORMULA
Equals binomial transform of [1, 1, 2, 1, 3, 1, 4, 1, 5, ...] - Gary W. Adamson, Apr 25 2008
From Paul Barry, Mar 18 2009: (Start)
G.f.: (1-2*x+x^2-x^3)/(1-2*x)^2.
a(n) = Sum_{k=0..n} C(n,k)*Sum_{j=0..floor(k/2)} C(j+1,k-j).
a(n) = Sum_{k=0..n} C(n,k)*A158416(k). (End)
a(n) = Sum_{k=0..n-2} (k+5)*binomial(n-2,k) for n >= 2. - Philippe Deléham, Apr 20 2009
a(n) = 2*a(n-1) + 2^(n-3) for n > 2, a(0) = 1, a(1) = 2, a(2) = 5. - Philippe Deléham, Mar 02 2012
G.f.: Q(0), where Q(k) = 1 + (k+1)*x/(1 - x - x*(1-x)/(x + (k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 24 2013
From Amiram Eldar, Jan 13 2021: (Start)
a(n) = (n+8) * 2^(n-3), for n >= 2.
Sum_{n>=0} 1/a(n) = 2048*log(2) - 893149/630.
Sum_{n>=0} (-1)^n/a(n) = 523549/630 - 2048*log(3/2). (End)
E.g.f.: (1/4)*((4+x)*exp(2*x) - x). - G. C. Greubel, Sep 27 2022
EXAMPLE
11 = 2 * 5 + 1;
24 = 2 * 11 + 2;
52 = 2 * 24 + 4;
112 = 2 * 52 + 8;
240 = 2 * 112 + 16;
512 = 2 * 240 + 32;
1088 = 2 * 512 + 64;
2304 = 2 * 1088 + 128; ...
MAPLE
1, 2, seq((n+8)*2^(n-3), n = 2..30); # G. C. Greubel, Sep 27 2022
MATHEMATICA
CoefficientList[Series[(1-2x+x^2-x^3)/(1-2x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 27 2012 *)
LinearRecurrence[{4, -4}, {1, 2, 5, 11}, 40] (* Harvey P. Dale, Sep 27 2024 *)
PROG
(PARI) a=[1, 2, 5, 11]; for(i=1, 99, a=concat(a, 4*a[#a]-4*a[#a-1])); a \\ Charles R Greathouse IV, Jun 01 2011
(Magma) I:=[1, 2, 5, 11]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 27 2012
(SageMath) [(n+8)*2^(n-3) - int(n==1)/4 for n in range(40)] # G. C. Greubel, Sep 27 2022
CROSSREFS
Sequence in context: A286945 A371797 A350326 * A077864 A052980 A190512
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 07 2007
STATUS
approved